COMPUTERS & SECURITY 112 (2022) 102510

Available online at www.sciencedirect.com

Computers

ScienceDirect Py

Security

journal homepage: www.elsevier.com/locate/cose

TC 11 Briefing Papers

* Badaslr: Exceptional cases of ASLR aiding |

exploitation

Daehee Jang **

Sungshin W. University, Seongbuk-gu Seoul, Republic of Korea

Check for
updates

ARTICLE INTFO ABSTRACT

Article history:

Received 30 August 2021
Revised 6 October 2021
Accepted 14 October 2021
Available online 22 October 2021

Keywords:

Address space layout randomization
memory exploit

heap randomization

low fragmentation heap

return oriented programming

Address Space Layout Randomization (ASLR) is de-facto standard exploit mitigation in our
daily life software. The simplest idea of unpredictably randomizing memory layout signifi-
cantly raises the bar for memory exploitation due to the additionally required attack primi-
tives such as information leakage. Ironically, although exceptional, there are rare edge cases
where ASLR becomes handy for memory exploitation. In this paper, we dig into such theo-
retical set of cases and name it as BadASLR. Based on our study, we introduce four categories
of BadASLR: (i) aiding free chunk reclamation in heap spraying attack, (ii) aiding stack pivot-
ing in frame-pointer null poisoning attack, (iii) reviving the exploitability of invalid pointer
referencing bug, and (iv) introducing wild-card ROP gadgets in x86/x64 position independent
code environment. To evaluate if BadASLR can be an actual plausible scenario, we look into
real-world bug bounty cases, CTF/wargame challenges. Surprisingly, we found multiple vul-
nerabilities in commercial software where ASLR becomes handy for attacker. With BadASLR
cases, we succeeded in exploiting peculiar vulnerabilities, and received total 10,000 USD as

bug bounty reward including one CVE assignment.

© 2021 Published by Elsevier Ltd.

1. Introduction

Modern software essentially adopts Address Space Layout
Randomization (ASLR) to harden the memory from various
exploitation attempts. The efficacy of ASLR is well-proven
and its practicality is arguably one of the best among vari-
ous software exploit mitigation techniques. Popular operat-
ing systems such as Linux, OSX and Windows by default en-
ables/supports ASLR for their application, and even the ma-
jority of embedded software takes ASLR feature for granted.
Especially when applied to 64-bit system, ASLR makes in-
feasible to predict any virtual memory address from attacker’s
exploitation code. This forces attackers to additionally equip

* Corresponding author.
E-mail address: djang@sungshin.ac.kr
https://doi.org/10.1016/j.cose.2021.102510
0167-4048/© 2021 Published by Elsevier Ltd.

themselves with a stronger exploitation capability - informa-
tion leakage. Thanks to ASLR, the difficulty of modern ex-
ploitation in large-scale software such as browsers and ker-
nel has substantially increased. To exploit memory corruption
bugs in such software, abusing strong information leakage bug
is a must nowadays.

We emphasize that ASLR is a standard exploit mitigation
technique protecting us for decades and this paper do not
intend to accuse its general efficacy in any manner. How-
ever, we summarize and analyze the rare and bizarre cases
which, ironically, ASLR acting as a useful tool for successful
exploitation; and refer such edge cases as BadASLR' Under-

1 In this paper, for simplicity, we mention heap memory layout
randomization techniques as part of ASLR in general. To be more

https://doi.org/10.1016/j.cose.2021.102510
http://www.sciencedirect.com/science/journal/01674048
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2021.102510&domain=pdf
mailto:djang@sungshin.ac.kr
https://doi.org/10.1016/j.cose.2021.102510

2 COMPUTERS & SECURITY 112 (2022) 102510

standing such BadASLR cases will advance the completeness
of knowledge and provide thought provoking insights in fu-
ture research.

There are four types of BadASLR categorized in this paper:

« Type-I: Supporting heap layout manipulation for use-after-
free and heap overflow.

« Type-II: Stack-pivoting support in frame pointer null-
poisoning.

« Type-III: Reviving exploitability of invalid pointer.

« Type-1V: Introducing wild-card ROP gadgets with diversi-
fied branch offset encoding.

BadASLR Type-I is cases related to randomization in heap
chunk allocation timing and their layout adjustment in at-
tacker’s advantage. Technically, the term ASLR indicates ran-
domizing the address/order of memory segments at page
granularity, but in this paper we include ASLR for all types
of memory layout randomization including heap chunk po-
sitioning (we clarify it in Section 2). BadASLR Type-II is related
to special type of stack-based buffer overflow that allows null-
poisoning against saved stack frame pointers (e.g., RBP regis-
ter value in x64). This type of buffer overflow can also occur
in heap. Exploitation of such partial overwrite involves pivot-
ing/lifting an existing pointer. BadASLR Type-III is related to
randomization in mmap (page allocation) or dynamic library
loading. The abusing scenario for Type-III is extremely un-
likely in 64-bit address space environment but quite plausible
in 32-bit virtual address space application. Finally, BadASLR
Type-1V is conceptually far from other BadASLR cases. The
scenario suggests that an ironic case which ASLR introducing
more diverse ROP gadgets is possible due to the randomized
inter-segment distance. Depending on compiler/linker op-
tions, branch target addressing in position independent code
might change its instruction encoding due to ASLR; which
gives diversity in encoded branch target offsets. This issue
only affects Intel CISC instruction set architecture where the
instructions can split with byte granularity; thus any byte se-
quence inside instruction can be an ROP gadget.

Each BadASLR cases are first theoretically discussed based
on assumptions and demonstrated with Proof-of-Concept
codes/examples. Afterward, based on our theoretical analysis
of BadASLR, we study real-world memory corruption exploits
and CTF/wargame challenges to see if such ironical cases can
actually happen in practice. Surprisingly, we found multiple
real-world cases for BadASLR Type-I and Type-III. Four bugs
we discovered was only possible to exploit it with the help of
ASLR. In particular, we found a peculiar heap overflow vulner-
ability in KMPlayer video parser and successfully exploited the
bug with CVE assignment (CVE-2018-5200). We exploited mul-
tiple BadASLR cases and got approximately 10,000 USD bug
bounty rewards in total.

The rest of this paper continues as follow: we provide back-
ground knowledge regarding basic memory corruption ex-
ploits and clarify our premise and assumptions in Section 2.
Detailed description and theoratical explanation of each

precise, ASLR is more specific term for randomizing the location
of memory segments such as.text or library mapping.

BadASLR cases are discussed in Section 3 with proof-of-
concept implementation code. As evaluation, we search var-
ious bug-bounty cases and CTF/wargame challenges to check
if our BadASLR cases are plausible and could be a real-world
scenario in Section 4. In Section 5, we discuss issues related to
BadASLR. In Section 6 we discuss related works, and conclude
in Section 7.

2, Background and assumptions
2.1. Memory exploitation related terms

Free Chunk Reclamation. Data objects are dynamically allo-
cated to the heap as needed, and should be freed when they
are no longer required. However, a programmer could create
some logic that accidentally references the pointer of a freed
object and uses the object as if it were still allocated. This is fa-
mously known as a use-after-free bug, and the pointer pointing
to the freed object is called Dangling Pointer. Free chunk recla-
mation is an exploitation attempt for re-allocating the memory
space pointed by dangling pointer. Upon successful free chunk
reclamation with attacker-controlled data, application uses
the attackers controlled data as if it is previously allocated ob-
ject, which is totally different from attacker’s data. Therefore,
if the original object contains function pointer which decides
the program execution flow, attacker could hijack such pointer
value to manipulate the program execution.

Heap Overflow. Heap overflow refers to a buffer overflow
vulnerability that occurs inside the heap area. There could be
many reasons that cause this vulnerability. One of the com-
mon case [12] is: (i). programmer accidentally declares the
length variable of buffer as signed integer type, (ii). attacker
uses a negative number in order to mislead the buffer length
calculation, (iii). attacker fills up the buffer with an unlimited
amount of data. Since the heap layout is dependent on the
memory allocator implementation and application semantics,
any heap overflow exploitation strategy would be application-
specific. However, heap overflow bug can be commonly ex-
ploited in two ways: (i). corrupting the metadata of the mem-
ory allocator or (ii). corrupting the applications heap data ad-
jacent to the buffer. The heap-overflow exploit discussed in
this paper mainly refers to the latter case, whereby the appli-
cation heap data is corrupted, not the metadata of memory
allocator.

NULL Poisoning. NULL poisoning is a specific type of buffer
overflow where the overwritten value can only be NULL. Typ-
ically, this is also refered as off-by-one error where the maxi-
mum length of accessible array is one byte greater than the
buffer size. Because of the confusing array indexing (e.g., ar-
ray index starts with zero, but human starts counting number
with one), null poisoning caused by off-by-one error is quite
common in practice.

2.2. ASLR And heap randomization

Technically, ASLR is not a precise term for heap randomiza-
tion as there are multiple aspects in randomizing general heap
memory layout. In general, ASLR for heap signifies random-
izing the base address of heap segment. However, for sim-

COMPUTERS & SECURITY 112 (2022) 102510 3

[Heap

15t allocation

2nd allocation

31 allocation

Dangling Pointer

(a) No ASLR

Dangling point created

v

Non-attacker-controlled Data

[Free Chunk

21 allocation

15t allocation

31 allocation

Dangling Pointer

(b) BadASLR

Attacker starts heap spray

A

(O

Benign data allocations

(attacker have no control)

>
Execution Time

Fig. 1 - BadASLR-(i) turning unexploitable use-after-free situation into highly exploitable situation. The figure is illustrating

the Fig. 3 proof-of-concept code.

plicity, we use the term ASLR for all types of heap random-
ization including the non-deterministic free chunk alloca-
tion Novark and Berger (2010). Any endeavor for randomizing
the memory address layout (including relative positioning) is
referred as ASLR in our paper.

2.3. Low fragmentation heap

Because the case studies in this paper often involves windows
Low Fragmentation Heap (LFH) allocator usage, we describe its
basic background. The LFH memory allocator was introduced
in Windows 2000 and XP. As the name suggests, LFH reduces
external memory fragmentation by gathering similar-sized
chunks adjacent to one another. In LFH, each heap bucket
(group of similar-sized chunks) contains hundreds or thou-
sands of chunks. All chunks inside the same bucket are of the
same size. When the application requests memory allocation
of size N, similar to most memory allocators, LFH rounds up
the N to a multiple of eight, and searches for an available slot
in the existing free chunks for the calculated size. If there is
no available free chunk for the expected allocation size, the
allocator creates a new heap bucket. Although LFH reduces
external memory fragmentation, it also induces the internal
fragmentation of the heap bucket. However, if the application
uses the heap for a large amount of data, the proportion of
internal fragmentation will be quite small. Considering that
most applications use an enormous amount of heap, LFH rep-
resents an effective choice for reducing the overall memory
fragmentation. The use of LFH can be explicitly configured by
both users and developers. However, in general, using the LFH
feature is the default configuration for most Windows-based

software such as widely-used web browsers and document
processing applications.

2.4. Position independent code

Position Independent Code (PIC) is a code fragment that can
be loaded to any memory address. To fully apply ASLR with-
out any predictable memory segment, it is essential to com-
pile codes in a form of PIC because their loaded address is un-
predictable due to ASLR. The main difference of PIC code and
non-PIC code is the offset encoding of branch target address.
Without ASLR, non-PIC code could use an instruction such as
jmp 0x8048123 using the branch target as 32-bit absolute
address encoded inside the instruction. However, in PIC code,
using such absolute memory address is infeasible because no
memory address is decided before program run-time. For ab-
solute address based branch instructions of PIC code, dynamic
linker is responsible to resolve/update such address at run-
time. This behavior is typically observed in Linux kernel mod-
ules. We refer PIC code while discussing BadASLR Type-IV.

2.5. Return oriented programming

Return Oriented Programming (ROP) is a practical exploita-
tion technique often used in various memory attacks which
allows the adversary to circumvent the Data Execution Pre-
vention (DEP). The basic idea is to re-use existing codes. The
essence is utilizing the ret instruction which takes next in-
struction pointer from stack memory. If attacker can put mali-
cious/controlled data into stack or hijack stack pointer to their

COMPUTERS & SECURITY 112 (2022) 102510

Buffer Short

Overflow

(a) No ASLR

Attacker Payload

- Exploitable Object

Buffer Short
Object Overflow

(b) BadASLR

[] Unexploitable Object

Fig. 2 - BadASLR-(i) turning unexploitable heap overflow vulnerability into exploitable one. The scenario is a conceptually
same to use-after-free case with only minor change in exploitation scenario setup.

fake stack payload, an attacker can chain the return instruc-
tions followed by piece of code from existing code segment.
Gathering such small piece of codes and stitching them can
ultimately allow an attacker to execute an arbitrary code. This
technique is also referred as code-reuse-attack.

3. Design

In this section, we categorize BadASLR into four types and ex-
plain their details in theory.

3.1. Badaslr type-I: Aiding free chunk reclamation

Heap spray is frequently utilized to enhance the reliability
of memory corruption based exploit. There are multiple data
types to spray inside heap depending on the exploitation en-
vironment. Although its outdated, the basic data type for heap
spray is the NOP-sled (and shellcode). Spraying the NOP-sled is
only meaningful when the target application lacks Data Exe-
cution Prevention (DEP) (Shacham, Hovav, 2007). Another type
of data attackers typically spray inside heap is objects embed-
ding pointers. These objects are sprayed in order to place at
least one of them at proper memory position (e.g., free chunk
reclamation). In theory, it is possible that ASLR (technically,
it is called heap randomization but we refer it as ASLR to
simplify terms) helping attacker to this end. We refer such
counter-intuitive situation as BadASLR Type-1.

For example, in use-after-free, consider a hypothetical sce-
nario where an application happens to allocate a chunk of
pure data (e.g., image) immediately after a dangling pointer
is created as illustrated in Fig. 1. In such case, use-after-free
vulnerability becomes unexploitable as the inevitable exe-
cution flow immediately re-reclaims the inadvertently freed
(dangling-pointed) chunk.

Same principle can be also applied to heap overflow vulner-
ability case. In the figure Fig. 2, we can consider the adjacent
heap chunk within a overwrite-able range as inadvertently
freed chunk of the use-after-free case. If a program subse-
quently makes allocation which consumes such memory re-

1 // Object embedding pointer to read/write memory
2 typedef struct _tagOBJ{

3 int id;

| char* read _write ptr;

5 [FOBIERPOBIE

6 // Pure constant-based data object
7 typedef struct _tagOBJ2{

8 int versionl;

9 int version2;
10 }0BJ2, *POBJ2;
11 void BadASLR Example(){

12 // program allocates pointer-embedding object

13 POBJ p = (POBJ)malloc(sizeof(0BJ));

14 /A

15 free(p); // inadvertent free!

16

17 // program allocates three objects (attacker have no
control)

18 POBJ2 pl = (POBJ2)malloc(sizeof(0BJ2));

19 POBJ2 p2 = (POBJ2)malloc(sizeof(0BJ2));

20 POBJ2 p3 = (POBJ2)malloc(sizeof(0BJ2));

21 memset(pl, 0, sizeof(0BJ2));

22 memset(p2, 0, sizeof(0BJ2));

23 memset(p3, 0, sizeof(0BJ2));

24

25 // attacker can spray heap at this point

26 parse input(...);

I

28 // use-after-free!

29 *(p->read_write ptr) = data;

30}

Fig. 3 - Proof-of-concept code for BadASLR Type1l.

gion with uncontrolled junk data (e.g., version string, constant
numbers) before attacker takes over heap control, exploitation
will become infeasible. Fig. 3 is a proof-of-concept example C
code for this scenario. In the example code, dangling pointer
is created at line 15. To exploit this as use-after-free, attacker
must reclaim this dangling-pointed free chunk with his/her
controlled data (e.g., byte stream which attacker injected as
part of input). However, in line 18 - 23, example program allo-
cates three heap chunks that has equal size to the dangling-
pointed free chunk. Without ASLR, the use-after-free becomes
impossible to exploit because attacker cannot reclaim the tar-
get free chunk. But with ASLR, free chunk allocation ordering

COMPUTERS & SECURITY 112 (2022) 102510 5

becomes random, thus it is unlikely that dangling-pointed tar-
get chunk will be consumed by three subsequent allocations.
As aresult, attacker gets a chance to reclaim the chunk at line
26 and exploit this use-after-free bug.

We note that this scenario is more plausible for relatively
simple application such as file parser (video, image, etc) that
has limited user-application interface. We also found a par-
tial exploitation step in 64bit Edge browser exploitation (CVE-
2016-0191 cve (2016)) falls into BadASLR Type-I. However, in
general, when it becomes to 64bit browser/kernel exploitation,
BadASLR Type-I scenario is very unlikely to be a real thing be-
cause the complexity of heap data management and the in-
teraction channel between application and user becomes gi-
gantic.

3.2. Badaslr type-II: Aiding stack pivot in frame pointer
NULL-Poisoning

As a specific case of off-by-one bug, null-poisoning is common
in heap exploitation. For example, a single byte of metadata
(e.g., size) corruption can lead things into chaos how (0000).
This technique can be equally applied to stack data structures.
In fact, if stack canary is bypass-able or absent, off-by-one
null-poisoning is a promising/reliable exploitation primitive
to pivot the stack frame to initiate ROP attack.

One might ask why we need to pivot the stack before
ROP. Consider if the stack buffer overflow is based on null-
terminated ascii string. Building ROP chain with such restric-
tion is often impossible because pointers usually require non-
ascii bytes. In this situation, an alternative exploitation strat-
egy is pivoting the stack where attacker already prepared the
ROP chain.

Because most of the compilers insert stack frame’s base ad-
dress (e.g., the value of RBP register in x64) on the stack and
chain them up for each function calls, even partially corrupt-
ing such saved frame pointer can pivot the stack and overlap
the return address with attacker’s local variable in other func-
tion frames (let us assume these local variables can be a work-
ing ROP chain). By null-poisoning the stack frame pointer, the
parent function stack frame will pivot towards lower mem-
ory address up to 255 (or 65,535 for lower two bytes poisoning)
bytes thus can overlap with attacker’s local variable in other
stack frame. Fig. 4 illustrates this scenario in detail.

The essence of BadASLR Type-II is that because modern
ASLR changes stack base address and offset every time, the
offset between pivoted stack frame and attacker’s local vari-
able (which aims to overwrite parent function’s return ad-
dress) can randomly change across executions within a pre-
dictable range of 255 or 65,535 bytes. Therefore, with average
255 (or 65535) trials of exploitation attempt, attacker can even-
tually overlap his/her local variable at a proper ROP chain po-
sition regardless of the local variable’s relative positioning in-
side the stack frame. Basically, in this hypothetical scenario,
ASLR is converting the NULL byte poisoning primitive into more
useful random byte poisoning. Without ASLR, NULL byte poison-
ing in this theoretical setup would be always exploitable with
single exploitation attempt, or never exploitable if stack lay-
out turns out unlucky. With ASLR, for every attack trial, at-
tacker has small chance to succeed exploitation regardless of

how the stack layout is positioned (as ASLR provide diversity
in stack frame layout).

3.3. BadASLR-(iii): Reviving invalid pointer reference

Invalid pointer refers to a virtual memory address with no ac-
cessible corresponding memory segment. Virtual memory ad-
dress is typically composed with stack, heap, code, and data
segment with different memory access permissions. Addi-
tionally, for dynamically linked binaries, shared library images
(or other files) are loaded into memory via program interpreter
(e.g., 1d-linux.so) dynamically.

Now let us consider a hypothetical bug which allows an
attacker to reference a fixed constant (say, 0x12345678) as
a pointer of an object (confusing constant and pointer). If
the virtual address 0x12345678 has no valid segment map-
ping, without ASLR, this bug is never exploitable. However,
ASLR opens a possibility for turning this bug into some-
thing exploitable with small chance. Because of ASLR, the ad-
dress 0x12345678 is no longer guaranteed to be inaccessi-
ble considering ASLR moving memory segments including li-
brary mapping and other dynamically mapped segments (e.g.,
MapViewOfFile in Windows). This is unrealistic in 64bit ad-
dress space, however, in 32bit address space the entropy of
segment base address is quite small. Surprisingly, we found an
actual real-world case of this unlikely exploitation scenario.
We visualize this exceptional hypothetical scenario in Fig. 5
and discuss real-world case in Section 4.

3.4. BadASLR-(iv): Introducing wild card ROP gadget

In theory, ASLR might contribute to increase the diversity of
ROP gadgets in x86/64 position independent binaries such as
shared objects. Position independent codes must handle out-
of-segment branches such as imported library calls. Because
the relative distance between position independent code and
library call target is unknown at compile time and decided at
runtime, branch offset for such call instructions must be up-
dated at runtime as well. Usually, such calls utilize additional
data structures known as procedure linkage table (PLT) and
global offset table (GOT) to calculate the target address using
a dynamically updated function pointer. However, depending
on the compiler options, dynamic linker can also resolve such
offset by updating the instruction code at runtime. In the lat-
ter case, ASLR introduces wild card ROP gadgets as a part of
branch target offset encoding.

In Fig. 6, the branch target offset in line 7 and 18 is changed
by ASLR at runtime. Because Intel is CISC machine, the chang-
ing bytes can act as a wild card ROP gadgets which can become
any instruction attacker expects with some attack iteration. In
fact, there are some crucial ROP gadgets composed only with
2 bytes such as stack pivot (e.g., xchg eax, esp;ret as 94 c3).
Admittedly, exploitation only viable with BadASLR-IV is unre-
alistic for some reasons: (i) it is likely that such small gadgets
would be already available somewhere else in the code base
(e.g., encoded constants or fixed relative offset) even without
BadASLR primitive, (ii) in reality, there are multiple ways to
construct ROP chains; thus an exploitation scenario only pos-
sible via BadASLR-IV is unrealistic. However, we find it is ed-
ucative and interesting to explore such theoretical scenarios.

6 COMPUTERS & SECURITY 112 (2022) 102510

High Addr

Attacker's Local

0xDEADBEEF Variable

ASLR randomly changing pivot
distance for each exploit attempt

High Addr

0xDEADBEEF

(Fake Retrun Address)
0 ~255 byte di

AAAAAAAA
Buffer (Off-By-One)

AAAAAAAA

Low Addr
Stack Before Return

Return Address '

Saved Frame Pointeri Poisoned NULL Byte Q

Normal Stack Frame 1

Saved Frame Pointer

AAAAAAAA

AAAAAAAA

M
Low Addr ¢
Stack After Return

Fig. 4 - BadASLR-(ii) turning off-by-one NULL byte poisoning against stack frame pointer into random byte (from 0 to 255

range) poisoning.

[] Unmmaped Memory

*(OxDEAD) = 1 : *(0xDEAD) = 1

.ee

X X

I R/W Memory Segment

, Invalid Pointer Reference

*(OXDEAD) = 1 : *(OXDEAD) = 1

.o

X v

>

(b) NoASLR

2
Execution

(b) BadASLR i

Fig. 5 - BadASLR-(iii) giving a survival chance to invalid pointer reference. Totally unexploitable invalid pointer reference

might become useful (with small chance) under ASLR.

4, Evaluation

To find out the prevalence of BadASLR, we analyze various ex-
ploitation cases. Based on our study, we report that BadASLR
is extremely unlikely to be an exploitation primitive in large-
scale, user interactive application such as browsers and ker-
nel. However, we found that it can be a working exploita-
tion primitive in small/non-user-interactive application such
as multimedia/document parser.

4.1. Case study: Heap overflow in WPS writer

WPS is an office suite software developed by King-
soft kin (0000). We have discovered a heap overflow bug

from WPS Writer exploitable with BadASLR Type-I. While
initializing data for a special object (let us denote as SOBJ)
in specific condition, the program accidentally calculates
the size of the object twice bigger than it should be. As a
result, the program initializes memory contents of SOBJ with
a miscalculated size and corrupts adjacent heap region. As
a result, attacker can overwrite adjacent heap region with
limited (fixed) length with data such as color code, font size
such that attacker can specify in the input file. Fig. 7 is the
example C code for explaining this bug.

In file parser exploitation, there is no leeway over the heap
allocation timing and overall heap memory management (de-
allocation, re-allocation, etc) because there is no continu-
ous interaction between attacker’s data and program. Unlike
JavaScript exploitation, attacker cannot freely decide when to

COMPUTERS & SECURITY 112 (2022) 102510 7

// 1st execution with ASLR
Disassembly of foo
3 0000000000000000 <foo>:

| 0: 55 push %rbp
5 1: 48 89 e5 mov %rsp,%rbp
6 4: 48 8d 3d 30 04 00 00 lea 0x430(%rip) ,%rdi
7 bi:ve8 ¢ /63 B2t/ Tf callg <puts>
8 10: 90 nop
9 iilg 5 pop %rbp
10 128 @3 retq
11
12 // 2nd execution with ASLR
I3 Disassembly of foo:
14 0000000000000000 <foo>:
15 ©2 93 push %rbp
16 1: 48 89 e5 mov %rsp,%rbp
1 4: 48 8d 3d 30 04 00 00 lea 0x430(%rip) ,%rdi
18 b: e8 cO /*43 69*/ 7f callg <puts>
19 10: 90 nop
20 ililg Byl pop %rbp
21 1238 @3 retq

Fig. 6 - Proof-of-concept example for BadASLR Type4.

typedef struct _tagSOBJ{
unsigned int color;
unsigned int font;

}S0BJ, *PSOBJ;

5 void Parse Document(){

PSOBJ p = (PSOBJ)malloc(sizeof(SOBJ));
8 p->color = get_color();
9 p->font = get_font();

11 // blocks exploitation under no-ASLR
12 alloc useless data();

14 if(special_condition()){
15 // bug (heap overflow)
16 p++;

17}

18

19 p->color = get color();

20 p->font = get font();

)1 }

Fig. 7 - Example C code to explain WPS bug.

allocate/de-allocate object. Therefore, if the adjacent object
(that attacker can overwrite via bug) happens to be something
useless, exploitation becomes infeasible.

In fact, in Windows 7 environment where LFH heap lacked
ASLR primitive (e.g., allocation sequence is deterministic), the
bug we discovered was never exploitable because the parser
immediately allocates a useless data chunk at the precise po-
sition where attacker can overwrite (adjacent to SOBJ). There-
fore, even attacker triggers buffer overflow, there is no mean-
ingful target to overwrite. However, ironically, this bug became
exploitable in Windows 8 environment where LFH adopted
ASLR primitive in their chunk allocation policy. As free chunk
for allocation is randomly chosen, it is unlikely that the use-
less data (immediately allocated after SOBJ allocation) will
consume the overwrite-able memory before the execution flow
reaches attacker’s heap control.

Table 1 - Average heap spray amount to reclaim a spe-
cific free chunk in randomized LFH heap bucket. N is the
number of initial allocation, K is the percentage of ran-

domly de-allocated chunks, SD stands for standard devi-
ation. The average value is calculated based on 10 itera-
tion.

Average
Chunk Spray
Size N K Amount SD
50 1,000 20 216.8 61.3
50 251.1 131.5
80 270.0 231.9
10,000 20 1559.8 705.0
50 2611.0 1206.1
80 3967.0 1879.1
100,000 20 11423.0 3464.0
50 14831.1 6021.3
80 13533.4 9790.0
500 1,000 20 201.8 26.8
50 158.6 104.0
80 219.6 127.8
10,000 20 1196.3 617.2
50 3037.6 1044.4
80 3360.8 1896.5
100,000 20 8350.2 4125.8
50 12695.1 5971.3
80 15300.9 6719.8

Due to the BadASLR Type-], it is highly likely that the
overwrite-able heap region remains as a free space until at-
tacker takes over control for heap allocation. Although we can-
not control when to allocate our data, we had control over how
many; which allow as to spray the heap to some extent. By ad-
justing proper heap-spray amount, with high probability, we
were able to overwrite useful (in terms of exploitation) objects
embedding function pointers. Table 1 is an experiment re-
sult for finding minimal heap spray amount in randomization-
enabled Windows 8.1 LFH heap. We allocate N chunks contin-
uously, then randomly de-allocate K percent of them. After-
ward, we randomly select a target free chunk (assuming as if
dangling pointed, or overwrite-able) and spray the heap un-
til our target gets reclaimed. The result suggests that we can
practically reclaim the target free chunk despite of the ran-
domized allocation sequence as heap defragments. We chose
chunk size 50 and 500 based on heap memory analysis that
such sizes are most prevalent as objects. From the experiment,
we can see that object size do not mainly affect the free chunk
reclamation process. The result also suggests that required
spray amount is usually proportionate to N. However, when N
is 100,000 and chunk size is 50, average spray amount is higher
when K is 50 than 80; which seems counter intuitive but it is
plausible if we consider multiple factors such as heap bucket
size.

4.2. Case study: Heap overflow in KMPlayer

Similarly to WPS Write exploitation, we discovered BadASLR
Type-I case in KMPlayer as well. We reported this bug to vendor
and got 4500 USD as reward and also a CVE assignment (CVE-
2018-5200 cve (2018)). In this vulnerability, KMPlayer do not

8 COMPUTERS & SECURITY 112 (2022) 102510

Chunk Allocation is Sequential

Alloc
0x24

No ASLR

Overwrite Begins at Last Position

| High Addr

Bad ASLR

ASLR Creates Holes at Random

Alloc
0x24
[Randomize |

=

[foae)

High Addr

High Addr

Fig. 8 — ASLR helping heap buffer overflow to overwrite a target object with high probability in CVE-2018-5200 KMPlayer

exploitation.

consider the edge case of H.263 video packet decoding (H.263
Sorenson Type). As a result, attacker can trigger heap overflow
with crafted H.263 Sorenson encoded video. Attacker had full
control over the length of attack payload, however, because
the overflow-ing data is decompressed video stream, we had
to overwrite the memory only with decompressed pixel val-
ues which gave us significant restriction in memory corrup-
tion. To survive the lossy decompression, exploit payload is
mostly composed with low-entropy byte patterns. Ultimately,
we were able to trigger heap buffer overflow inside heap buck
of size 0x24 chunks. To exploit this, we spray an object of size
0x24 with C++ virtual table pointer. After spraying the heap
bucket with such an object, we also allocate the decompres-
sion buffer of exact same size (0x24); then trigger the buffer
overflow.

Unfortunately, because the decompression (which triggers
buffer overflow) can only be triggered after we spray the size-
0x24 heap bucket, it was not possible to overwrite the target
object (that has virtual table pointer) if the heap chunks are
sequentially allocated towards higher address in determinis-
tic order. However, when ASLR is applied to heap chunk allo-
cation algorithm, we could reliably overwrite our target object
by precisely controlling the amount of heap spray and create
an hole with couple de-allocation. Fig. 8 illustrates this effect.
Because of such exceptional restriction in memory allocation
order, ASLR effectively supports the exploitation by allowing
attacker to create a hole in the middle of the sprayed objects.

4.3. Case study: Use-After-Free in HWP parser

One of a use-after-free bug we have discovered from a doc-
ument parser had BadASLR Type-I case. Fig. 9 is a simplified
pseudo code of the erroneous parsing logic resulting use-after-
free. From the pseudo code, we can observe that when the
parser encounters an invalid object, it frees the object and es-
capes the parsing loop. However, afterward, the program over-
looks the prior exceptional de-allocation and reference VPTR

1 // pseudo-code for parser logic
2 void Parse Document(){

Qﬁile(read file()){

4
5

6 object = allocate(); // attacker controls allocation
7 if(!isvalid(object)){

8 free(object)

9 break

10 }

11 parse(object)

13 I

14 process GUI(); // no control for attacker

16 process data(); // attacker re-gains heap control

18 object.funcl(); // use after free

Fig. 9 - Example C code to explain HWP bug.

(virtual pointer for C++ virtual table) pointer as if the object
was never freed.

We can also see that immediately after exiting the main
parsing loop, the program starts processing GUI elements. Af-
ter the GUI processing, the logic continues and finally refer-
ences the prior dangling pointer. We note that the execution
flow of this logic is deterministic thus attacker has no con-
trol over it. Unfortunately for the attacker, image raster data
allocation from "process_GUI()” step involves allocating heap
chunk that has exactly the same size as the dangling pointed
object. Therefore, without the randomization effect in heap
chunk allocation, the use-after-free in this example becomes
impossible to exploit. However with BadASLR Type-I, with high
chance, memory allocation in "process_GUI()” will not imme-
diately reuse the dangling pointed free chunk. Ironically, we
were able to reliably exploit this bug and hijack the control
flow in Windows 8 LFH environment (randomized allocation),
but could not exploit the bug under Windows 7 or XP which

COMPUTERS & SECURITY 112 (2022) 102510 9

// required -fno-stack-protector and -m32

1

2 // BASE = ((void*)0x80000000)

3 linped sifascii(oinbe)il

4 if(c>=0x20 && c<=0x7f) return 1;

5 return 0;

6}

7 void vuln(){

8 int a[40];

9 strcpy((char*)a, (char*)BASE);

10

11 void main(int argc, char** arg, char** env){

12 if(argc!=1) return;

13 ime 4, 33

14 for(i=0; env[i]; i++) for(j=0; env[il[j]; j++) env[i][
j1=0;

15 char* res = mmap(BASE, 4096, 7, MAP_ANONYMOUS
MAP_FIXED | MAP_PRIVATE, -1, 0);
16 if(res != BASE){

17 printf("mmap failed. tell admin\n");
18 _exit(1);

19 }

20 printf("Input text : ");

21 unsigned int n=0;

22 while(n<400 && is ascii(res[n++]=getchar()));
23 printf("triggering bug...\n");

24 wvuln();

25

Fig. 10 - Example Wargame Challenge for BadASLR Type-II.

do not support heap chunk randomization in their LFH allo-
cation. We reported this bug to vendor to fix it and got com-
pensated with 2500 USD.

4.4. Case study: Synthesized examples

We failed to discover BadASLR Type-II case in real-world ex-
ploitation examples, however, we were able to synthesize a
simple program which falls into this category. The vulnera-
bility in this program is based on strcpy with printable ascii-
only payload. Fig. 10 is the source code of this toy program. In
vuln function, there is a 40 byte stack-based buffer. In line 9,
strcpy copies printable ascii-only string from memory seg-
ment located at 0x80000000 hence far from stack and con-
sisted with non-ascii bytes only (e.g.,, 0x80 and NULL). Ulti-
mately, the only way to exploit this bug is NULL poisoning
(partial overwrite) the stack frame pointer using the NULL
termination byte of the printable-ascii string”. Without ASLR,
this challenge is infeasible to solve because the pivoted stack
will never properly overlap to attacker-intended relative ad-
dress. Admittedly, this is an artificial vulnerability and made
up exploitation environment. However, the example proves
that BadASLR Type-II is a theoretically working scenario.

4.5. Case study: Invalid pointer reference in HWP parser

We found a use-after-free in HWP document parser while
parsing V3 file format. Because V3 file format do not support
various document components, allocating/controlling heap
data is very limited. Therefore, although we found use-after-
free, it was impossible to reclaim the dangling pointer with

2 Overwriting the lower bytes of partial pointer and pivot-
ing/lifting the address is a quite common vulnerability exploita-
tion technique Kikuchi and Arimizu (2014)

malicious data that we can control. As a result, the only choice
for abusing this use-after-free bug is making the heap alloca-
tor to overwrite the dangling pointed region and corrupt data.

Fortunately, the dangling pointed object had virtual table
pointer (VPTR) as first member variable thus we could corrupt
the lower 2 bytes of VPTR pointer with next offset metadata
which the LFH allocator manages. In this case, the next offset
was changed into 65535 which indicates the next chunk is
out of range boundary. As a result, we could reference VPTR
pointer who'’s lower 16bit is always corrupted with OxFFFF.
Fig. 11 is the heap memory dump of this situation. Because
VPTR is included as part of text section, the OXFFFF over-
write shifted the pointer to point read-only literal constant
0x52691004 included in the same segment. Therefore, the
initial use-after-free turned into invalid pointer reference bug.
Without ASLR, there was no valid segment mapping at this ad-
dress. However, because of ASLR we had a small chance (1 out
of hundreds) to occasionally reference this pointer to finally
execute our controlled heap memory region as function; thus
allowing shellcode execution in no-DEP environment. This is
an example case of BadASLR Type-IIL

4.6. Case study: Wild card ROP gadgets

Unfortunately, we could not find example case for BadASLR-IV.
However, we report that branch target encoding instructions
being affected by ASLR is commonly observed in production
software.

There are multiple ways to resolve dynamic branch tar-
get address (e.g., combination of procedure linkage table and
global offset table). Depending on the application, a system
could simply re-write the branch offset at runtime which in-
troduce an ROP gadgets do not appear via static binary analy-
sis. For example, we can observe such behavior in Linux Ker-
nel Modules (LKM) insertion. Because modules are dynami-
cally inserted to kernel memory and there insertion sequence
can change, the branch offset of kernel imported functions
can also change across rebooting. The unpredictability of such
offset becomes higher if we consider KASLR kas (0000). Fig. 12
illustrates the branch offset relocation in LKM loading. In the
figure, the branch offset of mcount and strstr function
(boxed with red line) is changed after the module inserts into
kernel memory.

However, most of the recent compilers for building ma-
jority of user application uses PLT/GOT as default approach
to handle dynamic linking. Therefore, although it is theoreti-
cally possible that ASLR can introduce more ROP gadgets due
to diversified branch target offsets, it shouldn’t be very com-
mon. We have summarized our overall case study evaluation
in Table 2.

5. Discussion
5.1. ASLR And information leakage

When an application supports interactive scripting (e.g.,
JavaScript), information leakage bugs could allow an attacker
to dynamically calculate and figure out the memory address
of important data structures on-the-fly in exploitation. To

10

COMPUTERS & SECURITY 112 (2022) 102510

HuwpApp .d11:04730057 dd_52691004h

HupApp .d11:84730058 dd 526B8884h

HupApp .d11:0473005F dd 5269F 804h

HupApp .d11:04730063 dd 526C5004h t

HupApp .d11:04730067 dd 526B30084h

UNKNOWN 0473004B: HupApp.dll:0473004B
[B] Hex View-1
06F7C5A0 00 00 60 00 00 00 060 60 00 00 00 00 06 00 00 60
B6F7C5B0 _AA_AA_AA_AA 60 60 60 00
86F7C5CO FB 56 EE 86 ©8 00 60 60 50 08 60 690
86F7C5D0 vb 00 00 52 60 60 08 OF 00 00 60 03 66 61 60
06F7C5E0 00 060 00 58 FA AC 62 00 00 00 60 01 00 00
O6F7C5FG 08 00 00 60 OC 60 60 00 00 006 63 00 61 00 00 00
06F7C600 00 68 00 00 06 60 60 68 20 C5 F7 86 20 C5 F7 06
06F7C610 FF FF FF FF 00 00 00 60 00 00 00 060 01 00 00 60
06F7C620 00 66 60 60 66 60 660 60 ©60 66 00 60 00 60 60 060
06F7C630 00 00 00 60 00 00 60 60 60 00 60 60 00 00 00 60
G6F7C640 00 60 60 00 00 00 60 60 60 66 66 60 068 66 66 66
g6F7C650 _AA_AA AN _AA 60 00 60 00
86F7C668 68 00 80 00 68 S8F EA 06 88 69 AE 02
B6F7C670 08 U6 CO C5 F7 66 00 00 00 60 00 06 60 06
06F7C680 00 00 00 00 54 FO 79 64 11 22 3A 08 00 00 00 00

:

(J Hwpexe

C:#Program Files (x86)¥HncWCommon80¥HNC
C:¥#Program Files (x8B)WHncWCommon80wHNC

Bl ottnvnneann Filns 506GV tn AUC e v i O AW

FREE CHUNK

Fig. 11 - Lower 16 bit of VPTR pointer (originally 0x472916c) is overwritten by Oxffff (0x472ffff at 0x6f7c660). Corrupted VPTR
pointer deterministically points an invalid pointer 0x52691004 which is a fragment of pure data.

15t Boot

Kernel Memory

2" Boot

Kernel Memory

+0x50

mcount(){...}

1
:
i
I
i
-
1
i

1
| 1 0x60 1
. : == strstr(){...} X
1 ! 1
. ! X
! Loadable Kerel Module ! 1
| 88000007 offset | . |
! ss080807 loc_8806067: +0X30 1
; ©s000007 £s[3c 07 0 0jcall mcount =====-=-p-= . 1
! osossecc B BA 03 80 68 mov edx, offset aFlag . 1
| 88000011 8B 5D 6C mov ebx, [ebpsarg 4] | . 1
. 68000014 89 D8 mou eax, ebx . I
| ©8008816 E8 [29 67 8 BB]call strsty ======== T=1=1 | |
88608018 85 CO test eax, eax Lo
| 9800001D 75 10 jnz short loc_800003C | | } Offset | 1
. o Change! . Loadable Kernel Module |
1 1 ! | 08000007 offse
. H - 88808007 1loc_8808007:
=11 = 1
1 Strstr(){. . } 1' 1 <::> - r-osowoow7 Es[3C 07 00 0ojcall mcount .
: . - 6800000C BA BA 03 00 08 mou edx, offset aFlag |
! Lo | 88808011 8B 5D BC mou ebx, [ebprarg_h]
: ol - 98000014 89 DS mou eax, ebx |
1 ! | 58000016 ES call strstr
: ol - 88808618 85 CO test eax, eax 1
! . ! 08000010 75 1D jnz short loc_8008063C
1 1
! mcount(){...} -
| +0x40 |
1 1
1
| 1
1
| 1
1
| 1
1
| 1
1
| 1
1

Fig. 12 - Branch offset relocation across booting in Linux Lodable Kernel Module (LKM). Because kernel modules are
dynamically loaded, the branch offset between an import function’s source and destination offset can be decided at loading

time. This also can change due to KASLR.

Table 2 - Summary of Case Study Result. BadASLR-(i) is

quite common in 32-bit file parser applications.

BadASLR Type Prevalence Research Result

Type-I Found three cases in real-world application
Type-II Not Found

Type-III Found one case in real-world application
Type-IV Not Found

fully break ASLR, the best information leakage vulnerability
is the arbitrary memory read capability. For example, when
reading an array element via indexing, if the index is not
checked for its boundary, it is possible to read the entire

memory content with arbitrary index value. However, ASLR
bypassing is also feasible by revealing only a single pointer
value. Upon the leakage of a single pointer, all memory con-
tent bounded to the same segment is leaked. This is be-
cause attacker can obtain any address in the same segment by
adding/subtracting pre-calculable offsets between the leaked
pointer address and target address (as relative distance is con-
stant). However, leaking a pointer bounded to a specific mem-
ory segment do not also reveal other segments affected by
ASLR.
5.2. Exploitation in non-interactive software

BadASLR is set of edge cases thus uncommon in practice.
However, according to our evaluation, the prevalence largely

COMPUTERS & SEGURITY 112 (2022) 102510 11

depends on interactive-ness of the target application. If the
application is non-interactive — exploitation cannot change its
logic dynamically upon feedbacks - there are some real-world
cases exhibiting BadASLR. We estimate BadASLR will be ex-
tremely rare in browser/kernel as such software is fully inter-
active; however fairly common in multimedia processor, doc-
ument parser, and so forth.

5.3. Wild card ROP gadgets

We define wild card ROP gadget as a fragment of in-
struction which randomly change across execution. Pre-
viously, a number of studies explored the prevalence of
ROP gadgets, automation for finding them, and ideas to
reduce them Coffman et al. (2016); Davi et al. (2014);
Follner et al. (2016); Mortimer (2019); Stancill et al. (2013). To
that end, in theory, we demonstrated that ASLR introduces
wild card ROP gadgets (BadASLR Type-IV) in Intel ISA be-
cause branch instructions in position-independent-code can
dynamically change their embedded offset encoding due to
ASLR. According to our evaluation, this turns out only plausi-
ble as theory.

6. Related work
6.1. Good system introducing new bugs

Wressnegger et al. demonstrated in their paper (Twice
the Bits, Twice the Trouble: Vulnerabilities Induced by Mi-
grating to 64-Bit Platforms) that migrating a 32-bit ap-
plication into 64-bit environment could introduce new
bugs Wressnegger et al. (2016). Such bugs are mainly caused
by the confusing interpretation of LONG type variable which is
considered 32bit in Windows however treated as 64bit in Linux
environment. The paper found various example cases of such
errors and evaluated the prevalence. We also present the pa-
per in a similar sense but with different topic: edge cases of
ASLR supporting exploitation.

6.2. Fine-Grained ASLR and badaslr

ASLR we mention in this paper is based on real-world
deployed coarse-grained version. However, recent works
are proposing fine-grained ASLR Davi et al. (2013);
Hiser et al. (2012); Kil et al. (2006); Li et al. (2010);
Seo et al. (2017); Snow et al. (2013); Wartell et al. (2012).
Instead of applying address randomization to memory seg-
ments, fine grained ASLR pursuits randomizing location of
basic blocks. Obviously, such attempt will incur additional
overhead and complication in return of security efficacy.
Under the fine-grained ASLR assumption, BadASLR theory
remains equally effective. In fact, BadASLR Type-IV becomes
even more plausible under fine-grained ASLR because the
branch offset always change across the execution.

6.3. Non-Randomization based defense

Exploitation discussed in this paper is mainly based on
heap vulnerabilities such as use-after-free dangling pointer

and ASLR is effective mitigation in general. However, there
are other types of vulnerabilities and heap exploit mitiga-
tion which is orthogonal to ASLR as well. For example, to
detect the exploitation of dangling pointers, dynamic anal-
ysis approaches Caballero et al. (2012); Lee et al. (2015);
Nagarakatte et al. (2010); Serebryany et al. (2012);
Xu et al. (2004); Younan (2015) utilize metadata that contain
the status/relation between objects and the corresponding
pointers. However, compared to ASLR-like randomization,
it is challenging to maintain precise metadata under low
performance degradation. Tracking numerous pointers and
their propagation incurs high performance overhead, which
prevents such approaches from being widely adopted in
complex programs.

Isolation based heap protection is also an effective heap
defense orthogonal to ASLR. The isolation heap protection ap-
proach separates heap allocation area for each object type. In
conventional applications, all objects are present in a single
shared heap area, so that the use-after-free and heap over-
flow attacks are more feasible. On the other hand, the isolation
heap scheme can mitigate the use-after-free and heap over-
flow attacks by assigning the isolated heap allocation space for
each individual object, thereby removing the possibility that
the attacker-targeted heap object (e.g., dangling-pointed free
chunk) overlapped with the heap object under the control of
the attacker. Cling Akritidis (2010) shows a nice work regard-
ing this approach.

6.4. Various randomization approaches in heap chunk
allocation

Heap randomization and its exploit is the main issues cov-
ered in our evaluation. We only focused on heap randomiza-
tion which shuffles the allocation order in free chunk selec-
tion which was deployed in real-world as part of Windows 8
non-deterministic LFH heap Valasek and Mandt (2012). How-
ever, randomization in heap has been discussed in a number
of prior studies, and their randomization method differs from
one to another. For example, Bhatkar et al. and Qin et al., re-
spectively randomize the base address of the heap, as shown
in Refs. Bhatkar et al. (2003); Qin et al. (2005). Additionally,
there are others approaches that randomize heap chunk size
during allocation phase Iyer et al. (2010); Kharbutli et al. (2006).
Finally, other work focus on randomizing heap meta-
data Berger and Zorn (2006); Bhatkar et al. (2005); Novark and
Berger (2010). Furthermore, Ref. randomizes the order of heap
chunk allocation as well.

7. Conclusion

In this paper, we presented BadASLR: a set of peculiar cases
where ASLR counter-intuitively aiding memory exploitation.
ASLR is, without a doubt, one of the most successful and
popular exploit mitigation technique well deployed in real-
world. However, according to our study, there are four types of
BadASLR in theory, and some of the cases were actually found
in real-world exploitation. We do not argue to change/fix the

12 COMPUTERS & SECURITY 112 (2022) 102510

current randomization scheme as plus side of ASLR if signif-
icantly greater, but we hope our research can be a thought-
provoking paper for advancing the completeness of knowl-
edge.

Declaration of Competing Interest

The authors declare that they have no known competing fi-
nancial interests or personal relationships that could have ap-
peared to influence the work reported in this paper.

Acknowledgement

This work was supported by the Sungshin Womens University
Research Grant of 2021.

REFERENCES

Akritidis P. Cling: A memory allocator to mitigate dangling
pointers. In: USENIX Security Symposium; 2010. p. 177-92.

Berger ED, Zorn BG. Diehard: probabilistic memory safety for
unsafe languages, 41. ACM; 2006. p. 158-68.

Bhatkar S, DuVarney DC, Sekar R. Address obfuscation: An
efficient approach to combat a broad range of memory error
exploits, 3; 2003. p. 105-20.

Bhatkar S, DuVarney DC, Sekar R. In: Usenix Security. Efficient
techniques for comprehensive protection from memory error
exploits; 2005.

Cve,2018-2018-5200. KMPlayer 4.2.2.15 and earlier have a Heap
Based Buffer Overflow Vulnerability.

Caballero J, Grieco G, Marron M, Nappa A. Undangle: early
detection of dangling pointers in use-after-free and
double-free vulnerabilities. In: Proceedings of the 2012
International Symposium on Software Testing and Analysis.
ACM; 2012. p. 133-43.

Coffman J, Kelly DM, Wellons CC, Gearhart AS. Rop gadget
prevalence and survival under compiler-based binary
diversification schemes. In: Proceedings of the 2016 ACM
Workshop on Software PROtection; 2016. p. 15-26.

Davi L, Sadeghi A-R, Lehmann D, Monrose F. Stitching the
gadgets: On the ineffectiveness of coarse-grained control-flow
integrity protection. In: 23rd {USENIX} Security Symposium
({USENIX} Security 14); 2014. p. 401-16.

Davi LV, Dmitrienko A, Nirnberger S, Sadeghi A-R. Gadge me if
you can: secure and efficient ad-hoc instruction-level
randomization for x86 and arm. In: Proceedings of the 8th
ACM SIGSAC symposium on Information, computer and
communications security; 2013. p. 299-310.

Follner A, Bartel A, Bodden E. Analyzing the gadgets. In:
International Symposium on Engineering Secure Software
and Systems. Springer; 2016. p. 155-72.

Shellphish,how2heap. Educational Heap Exploitation.

Hiser], Nguyen-Tuong A, Co M, Hall M, Davidson JW. Ilr: Where'd
my gadgets go?. In: 2012 IEEE Symposium on Security and
Privacy. IEEE; 2012. p. 571-85.

Iyer V, Kanitkar A, Dasgupta P, Srinivasan R. Preventing overflow
attacks by memory randomization. In: Software Reliability
Engineering (ISSRE), 2010 IEEE 21st International Symposium
on. IEEE; 2010. p. 339-47.

King, soft. WPS Complete office suite with PDF editor.

Function, granular kernel address space layout randomization.

Kharbutli M, Jiang X, Solihin Y, Venkataramani G, Prvulovic M.
Comprehensively and efficiently protecting the heap, 41. ACM;
2006. p. 207-18.

Kikuchi H, Arimizu T. On the vulnerability of ghost domain
names. In: 2014 Eighth International Conference on
Innovative Mobile and Internet Services in Ubiquitous
Computing. IEEE; 2014. p. 584-7.

Kil C, Jun J, Bookholt C, Xu J, Ning P. Address space layout
permutation (aslp): Towards fine-grained randomization of
commodity software. In: 2006 22nd Annual Computer Security
Applications Conference (ACSAC’06). IEEE; 2006. p. 339-48.

Lee B, Song C,Jang Y, Wang T, Kim T, Lu L, Lee W. Preventing
use-after-free with dangling pointers nullification.
Proceedings of the 2015 Internet Society Symposium on
Network and Distributed Systems Security, 2015.

LiJ, Wang Z, Jiang X, Grace M, Bahram S. Defeating
return-oriented programming through gadget-less kernels. In:
Proc. European Conference on Computer Systems; 2010.

p. 195-208.

Microsoft,2016Cve-2016-0191. Edge allows remote attackers to
execute arbitrary code.

Mortimer T. Removing rop gadgets from openbsd. Proc. of the
AsiaBSDCon 2019:13-21.

Nagarakatte S, Zhao J, Martin MM, Zdancewic S. Cets: compiler
enforced temporal safety for c, 45. ACM; 2010. p. 31-40.

Novark G, Berger ED. Dieharder: securing the heap. In:
Proceedings of the 17th ACM conference on Computer and
communications security. ACM; 2010. p. 573-84.

Qin F, Tucek J, Sundaresan J, Zhou Y. Rx: treating bugs as
allergies—a safe method to survive software failures, 39. ACM;
2005. p. 235-48.

Seo], Lee B, Kim SM, Shih M-W, Shin I, Han D, Kim T. Sgx-shield:
Enabling Address Space Layout Randomization for Sgx
Programs; 2017. NDSS

Shacham, Hovav. The geometry of innocent flesh on the bone:
Return-into-libc without function calls (on the x86).
Proceedings of the 14th ACM conference on Computer and
communications security 2007:552-61 In press.

Snow KZ, Monrose F, Davi L, Dmitrienko A, Liebchen C,

Sadeghi A-R. In: 2013 IEEE Symposium on Security and
Privacy, IEEE. Just-in-time code reuse: On the effectiveness of
fine-grained address space layout randomization; 2013.
574-588

Serebryany K, Bruening D, Potapenko A, Vyukov D.
Addresssanitizer: A fast address sanity checker. In: USENIX
Annual Technical Conference; 2012. p. 309-18.

Stancill B, Snow KZ, Otterness N, Monrose F, Davi L, Sadeghi A-R.
Check my profile: Leveraging static analysis for fast and
accurate detection of rop gadgets. In: International Workshop
on Recent Advances in Intrusion Detection. Springer; 2013.

p. 62-81.

Valasek C, Mandt T. Windows 8 heap internals. Black Hat USA
2012.

Wartell R, Mohan V, Hamlen KW, Lin Z. Binary Stirring:
Self-randomizing Instruction Addresses of Legacy X86 Binary
Code. In: Proceedings of the 2012 ACM conference on
Computer and communications security; 2012. p. 157-68.

Wressnegger C, Yamaguchi F, Maier A, Rieck K. Twice the bits,
twice the trouble: Vulnerabilities induced by migrating to
64-bit platforms. In: Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security;
2016. p. 541-52.

Xu W, DuVarney DC, Sekar R. An efficient and
backwards-compatible transformation to ensure memory
safety of ¢ programs. ACM SIGSOFT Software Engineering
Notes 2004;29(6):117-26.

Younan, Y., 2015. Freesentry: Protecting against use-after-free
vulnerabilities due to dangling pointers.

http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0001
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0001
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0002
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0002
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0002
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0003
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0003
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0003
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0003
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0004
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0004
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0004
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0004
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0006
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0006
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0006
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0006
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0006
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0007
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0007
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0007
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0007
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0007
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0008
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0008
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0008
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0008
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0008
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0009
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0009
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0009
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0009
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0009
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0010
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0010
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0010
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0010
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0012
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0012
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0012
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0012
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0012
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0012
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0013
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0013
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0013
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0013
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0013
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0016
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0016
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0016
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0016
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0016
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0016
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0017
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0017
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0017
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0018
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0018
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0018
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0018
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0018
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0018
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0019
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0019
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0019
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0019
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0019
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0019
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0019
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0019
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0020
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0020
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0020
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0020
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0020
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0020
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0022
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0022
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0023
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0023
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0023
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0023
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0023
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0024
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0024
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0024
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0025
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0025
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0025
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0025
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0025
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0026
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0026
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0026
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0026
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0026
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0026
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0026
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0026
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0026
http://refhub.elsevier.com/S0167-4048(21)00334-5/opt60Yvv75FOq
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0027
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0027
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0027
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0027
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0027
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0027
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0027
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0027
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0028
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0028
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0028
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0028
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0028
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0029
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0029
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0029
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0029
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0029
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0029
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0029
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0030
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0030
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0030
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0031
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0031
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0031
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0031
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0031
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0032
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0032
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0032
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0032
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0032
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0033
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0033
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0033
http://refhub.elsevier.com/S0167-4048(21)00334-5/sbref0033

COMPUTERS & SECURITY 112 (2022) 102510 13

Daehee Jang received the B.S. degree in Computer Engineering
from Hanyang University, South Korea, in 2012. He also received
the M.S. degree in Information Security from Korea Advanced In-
stitute of Science and Technology (KAIST), South Korea, in 2014.
He received Ph.D. of Information Security at KAIST in 2019; and he

worked as postdoctoral researcher at Georgia Tech until 2020. He
participated in various global hacking competitions (such as DEF-
CON CTF) and won several awards. He received a special prize from
2016 Korean government annual event for finding 0-day security
vulnerabilities in many software products.

	Badaslr: Exceptional cases of ASLR aiding exploitation
	1 Introduction
	2 Background and assumptions
	2.1 Memory exploitation related terms
	2.2 ASLR And heap randomization
	2.3 Low fragmentation heap
	2.4 Position independent code
	2.5 Return oriented programming

	3 Design
	3.1 Badaslr type-I: Aiding free chunk reclamation
	3.2 Badaslr type-II: Aiding stack pivot in frame pointer NULL-Poisoning
	3.3 BadASLR-(iii): Reviving invalid pointer reference
	3.4 BadASLR-(iv): Introducing wild card ROP gadget

	4 Evaluation
	4.1 Case study: Heap overflow in WPS writer
	4.2 Case study: Heap overflow in KMPlayer
	4.3 Case study: Use-After-Free in HWP parser
	4.4 Case study: Synthesized examples
	4.5 Case study: Invalid pointer reference in HWP parser
	4.6 Case study: Wild card ROP gadgets

	5 Discussion
	5.1 ASLR And information leakage
	5.2 Exploitation in non-interactive software
	5.3 Wild card ROP gadgets

	6 Related work
	6.1 Good system introducing new bugs
	6.2 Fine-Grained ASLR and badaslr
	6.3 Non-Randomization based defense
	6.4 Various randomization approaches in heap chunk allocation

	7 Conclusion
	Declaration of Competing Interest
	Acknowledgement

	Reference

