
Citation: Jang, D.; Kim, J.; Kim, J.; Im,

W.; Jeong, M.; Choi, B.; Kil, C.K. On

the Analysis of Coverage Feedback in

a Fuzzing Proprietary System. Appl.

Sci. 2024, 14, 5939. https://doi.org/

10.3390/app14135939

Academic Editors: Shanling Dong,

Meiqin Liu and Yutaka Ishibashi

Received: 28 May 2024

Revised: 28 June 2024

Accepted: 5 July 2024

Published: 8 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

On the Analysis of Coverage Feedback in a Fuzzing
Proprietary System
Daehee Jang 1, Jaemin Kim 2,3, Jiho Kim 4, Woohyeop Im 1, Minwoo Jeong 1, Byeongcheol Choi 5

and Chongkyung Kil 2,*

1 School of Computing, Kyung Hee University, Yongin 17104, Republic of Korea; daehee87@khu.ac.kr (D.J.);
pwn@khu.ac.kr (W.I.) p1nkjelly@khu.ac.kr (M.J.)

2 CW Research Inc., Shrewsbury SY2 6BL, UK; woaalsdl12@gmail.com
3 Department of Computer and Information Security, Sejong University, Seoul 05006, Republic of Korea
4 College of Computing, Georgia Institute of Technology, Atlanta, GA 30332, USA; jkim4050@gatech.edu
5 ETRI, Daejeon 34129, Republic of Korea; corea@etri.re.kr
* Correspondence: contact@cwresearchlab.co.kr

Abstract: Coverage feedback is one of the key mechanisms for improving the effectiveness of fuzzers
by measuring and comparing the executed code regions while processing input data. In general,
such guidance should always improve the performance of fuzzers to better find unexplored code
regions. However, proprietary systems with uncommon I/O interfaces (e.g., UAV system, IoT devices,
satellite firmware) require extensive engineering/porting efforts to apply coverage feedback support
in developing their fuzzing platform. In this paper, we evaluate the detailed efficacy of coverage
feedback in fuzzing based on 44 real-world bugs we found using OSS-Fuzz. Our analysis uncovered
when and how code coverage information can be helpful, and our experiment demonstrates that
although coverage guidance is always helpful to some extent, its effectiveness depends on various
external factors. Therefore, such factors should be carefully considered for optimizing the cost and
efficiency in designing the fuzzing architecture of proprietary systems.

Keywords: fuzzing; coverage feedback; bug detection

1. Introduction

Fuzzing automatically generates test data and executes the target application (data
parser) repeatedly until an error is detected. Because the idea of fuzzing was first published
in 1990 by Miller et al. [1], it quickly became one of the most universal methods for ensuring
software reliability and finding bugs in a wide range of software [2]. For example, OSS-
Fuzz [3], Google’s open-source fuzzing platform, contributed to the discovery and patching
of over 10,000 vulnerabilities and 36,000 bugs in approximately 1000 projects.

As fuzzing has been well proven to be effective in practice, researchers have placed
significant efforts into enhancing efficacy/performance with various ideas such as combin-
ing symbolic execution or tainting techniques with fuzzing algorithms. In the last decade,
numerous works [4,5] have suggested state-of-the-art fuzzing methods to enhance the
fuzzer’s capability to find bugs.

One of the standard approaches for evaluating new fuzzers is by using the code coverage
as an evaluation metric. Some previous work [6,7] has been solely focused on providing a
framework for comparing and evaluating fuzzers. Recently, however, researchers started
questioning this evaluation approach [8,9]. The question is: “does achieving better code
coverage always guarantee better fuzzing results?”. To quote the paper [9]: “fuzzer best at
achieving coverage, may not be best at finding bugs”. These recent works suggest that achieving
maximum coverage with feedback is helpful in general, but it should not be the only metric
for evaluating the efficacy of finding bugs.

Appl. Sci. 2024, 14, 5939. https://doi.org/10.3390/app14135939 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14135939
https://doi.org/10.3390/app14135939
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app14135939
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14135939?type=check_update&version=1

Appl. Sci. 2024, 14, 5939 2 of 15

In general, it is certain that expanding code coverage with feedback is beneficial
for fuzzing. However, if such a benefit requires extensive engineering cost, we need to
analyze and compare the detailed efficacy relative to the cost. Such costs in fuzzing are
especially high in proprietary systems. It is noteworthy that researchers recently started
to aggressively apply fuzzers to proprietary systems such as IoT devices, drones, cars,
satellite firmware, and various embedded systems [10–12]. These recent works suggest that
the porting costs of applying coverage feedback in fuzzing such unique systems is costly
and challenging.

To address such recent fuzzing research issues, we quantify and measure the detailed
costs of applying coverage feedback in fuzzing and its efficacy for optimizing system design.
Our main hypothesis is that the efficacy of coverage guidance in fuzzing will substantially
differ based on various factors such as the initially given sample data, type of application
parsers, type of bug, and so on. While it is easy to write simple code snippets that highlight
the obvious benefits of coverage feedback, our goal is to investigate the efficacy of coverage
guidance for various types of fuzzers that have found real-world bugs and reveal what the
important factors are in coverage feedback. The goal of our research is to determine and
justify when and why we need to apply (or not apply) the coverage feedback feature when
fuzzing proprietary systems based on closed sources.

To address the aforementioned research issue, we used 44 unique real-world bugs that
we discovered over a year using the OSS-Fuzz and ClusterFuzz [13] fuzzing infrastructures.
With this ground-truth dataset, we iterated finding such previous bugs with various
configurations regarding coverage guidance: (i) no coverage feedback, (ii) partial coverage
feedback, and (iii) full coverage feedback. With this experiment, we were able to determine
the relationship between efficacy of coverage guidance and multiple factors. Note that
the motivation for our work stems from assessing the efficiency of coverage feedback in
closed-source software. However, we used open-source software for our evaluation as an
alternative because acquiring a sufficient amount of closed-source software and finding
dozens of bugs for evaluation is very challenging in practice. Although the evaluation
target is based on open-source software, we believe that the stochastic tendencies we find
and analyze in our evaluation should be equally valuable.

In short, our study revealed that the quality of initial seed (initially given the test
case data for mutation) has a strong correlation to coverage feedback efficacy. When ad-
equate initial seeds were provided, the efficiency in bug reproduction showed minimal
performance variation regardless of whether coverage feedback is given or not. Such an
observation suggests that investing in quality initial seed data might sometimes be more
beneficial than solely on enhancing coverage feedback with significant porting/engineering
efforts in fuzzer development. For the efficient fuzzing of proprietary systems, we em-
phasize the importance of balanced resource allocation between developing sophisticated
coverage feedback mechanisms and generating comprehensive initial test cases.

2. Background
2.1. Code Coverage and Fuzzing

Code coverage encompasses various metrics, including function coverage, statement
coverage, branch coverage, condition coverage, and line coverage [14]. These metrics differ
in the choice of the unit for measuring coverage. For example, line coverage treats each line
as a unit (based on source code), whereas branch or block coverage examines the number
of executed branches or blocks in the assembly or binary level. In software testing, code
coverage is measured via crafted test cases including data and code altogether (e.g., unit
test) to find errors in the software development phase [15]. In fuzzing, code coverage
is measured by feeding the target code a randomly generated (mutated) test input [16].
However, according to recent studies [8,9], achieving 100% code coverage does not always
guarantee testing quality nor the finding of bugs. In this paper, we figure out more details
to this end, considering the system porting costs for applying coverage feedback fuzzing to
closed-source systems.

Appl. Sci. 2024, 14, 5939 3 of 15

2.2. Fuzzing Proprietary System

Fuzzing proprietary systems has many challenges compared to open-source-based
fuzzing. Open source allows fuzzers to recompile and instrument the target code for
measuring various features in their fuzzing process, thus enhancing performance. However,
most proprietary applications, such as IoT and UAV firmware, cannot be recompiled and
instrumented. One way to apply coverage feedback in such closed-source applications is by
using an emulator [17] such as QEMU. Unfortunately, only a few proprietary systems can
be emulated in reality. Even worse, some of these firmware are cryptographically signed
and encrypted, thus preventing them from being modified, even at the binary or assembly
level. Our research can be a reference for designing fuzzers for such systems.

2.3. Coverage Feedback in libFuzzer

libFuzzer is one of the most successful coverage-guided fuzzers that is incorporated
into compiler frameworks [18]. While libFuzzer is a powerful fuzzing tool, it requires a
complete source code that is compliant with specific versions of Clang/GCC compilers, thus
making it only available for open-source software that provides specific build configuration
based on generic compilers. Algorithm 1 is the simplified libFuzzer’s internal logic.

Algorithm 1: libFuzzer Core Fuzzing Algorithm

initialize;
while NumberOfRuns < Options.MaxRuns do

choose unit to mutate from corpus;
for i← 1 to Options.MutationDepth do

if NumberOfRuns >= Options.MaxRuns then
break;

end
mutate;
run with mutated input;
if NewCoverage then

add mutated input to corpus;
break;

end
end

end

In libFuzzer’s core algorithm, an input unit is selected from the corpus (a set of
input data) for random mutation. The mutated test input is then tested against the target
code until new coverage has been found or the maximum mutation depth is reached
(libFuzzer’s fuzzing also halts upon bug detection). If the mutated input reports new
coverage, it is considered interesting and is added to the corpus so that it can be potentially
mutated again afterwards. In our paper, we use libFuzzer as the baseline evaluation tool for
our investigation. We mainly modify libFuzzer in two ways (ignoring coverage feedback
and increasing the granularity of the coverage guidance feature).

2.4. Utilizing OSS-Fuzz Project

OSS-Fuzz is a collection of more than 1000 open-source-based fuzzing projects initiated
by Google. In numerous academic studies, OSS-Fuzz serves as an experimental baseline
for evaluating the efficacy of coverage feedback-based fuzzing. Researchers can utilize
OSS-Fuzz to conduct experiments on a variety of open-source fuzzing against real-world
software (mostly libraries). In this paper, we utilize libFuzzer stubs in OSS-Fuzz that have
actually found real-world bugs to justify our claims in research experiments.

Appl. Sci. 2024, 14, 5939 4 of 15

3. Materials and Methods

For the experiment environment setup, we use the Clang compiler from LLVM-15
(git commit hash bf7f8d6fa6f460bf0a16ffec319cd71592216bf4). To set up the experiment
environment, we need to understand the internals of libFuzzer’s code coverage feedback
algorithm and modify them properly for comparison. We use Docker for an automated/fast
experiment environment controlled with approximately 1000 lines of Python scripts to
manage the experiment system. Figure 1 illustrates the overall architecture design of our
experiment system.

Figure 1. Overall workflow for the experimentation environment setup and analysis. First, we ran OSS-
Fuzz for 2 years and found 44 unique crashes based on libFuzzer. Second, we recompiled all libFuzzer
source codes based on our customized Clang (no-coverage, partial-coverage, full-coverage) for compari-
son. Finally, we ran recompiled fuzzers until they reproduced previous crashes and compared/analyzed
the detailed contribution of the coverage feedback feature for each application type.

The workflow in our experiment begins with gathering unique real-world bugs based
on OSS-Fuzz fuzzers. We have set up our own fuzzing infrastructure/management sys-
tem based on ClusterFuzz (Although OSS-Fuzz and ClusterFuzz are open-source, crash
discovery results found using this infrastructure are undisclosed. Therefore, we used our
private infrastructure based on a modified version of ClusterFuzz and gathered unique
bugs in OSS-Fuzz for years) and utilized it to find 44 unique memory bugs in OSS-Fuzz
projects based on libFuzzer as the fuzzing engine. Following this, a crucial step in our
experiment is to recompile the libFuzzer stubs responsible for finding such bugs based on
our customized Clang compiler. The Clang compiler customization allows us to change the
code coverage feedback mechanism provided by libFuzzer (libFuzzer is implemented as
a part of Clang compiler runtime): (i) no coverage feedback, (ii) partial coverage feedback,
and (iii) full coverage feedback. If we cross-reference the results based on the three different
versions of fuzzers, we can find the tendency and relationship between the effectiveness of
coverage guidance in detail.

More specifically, we run each fuzzer until they replicate the previously identified
bugs and measure the consumed execution count for this reproduction. Based on this
measurement, we analyze the detailed impact and outcomes of fuzzing with different
levels of coverage feedback. Through this process, we cross-reference and analyze how the
coverage feedback mechanism influences the effectiveness of fuzzing across various factors,
including the type of application parser, initial seed data, and so forth. This examination
should provide a better understanding and justification of applying coverage feedback
for fuzzing proprietary systems that require high porting costs and engineering efforts for
integrating such mechanisms.

Appl. Sci. 2024, 14, 5939 5 of 15

3.1. Modification to libFuzzer for the Experiment

We modify and prepare three versions of the Clang compiler for the experiment: (i) the
no-coverage version, (ii) the partial coverage version, and (iii) the full coverage version
(the original one). Modifying to totally exclude code coverage feedback in libFuzzer’s
implementation (for the no-coverage version) seems to be a simple task; however, there are
a few things to consider. For example, simply ignoring the coverage feedback information
for deciding whether to keep or discard the mutated input raises some problems. If we
always choose to keep the mutated input by skipping the coverage feedback operations,
the corpus set will continuously increase over time, thus quickly exhausting disk/memory
space and slowing down the entire fuzzer’s performance until it crashes due to an out-of-
memory error. Thus, this decision is improper for our experiment design. Also, we need to
be careful of compiler optimization erasing important instructions unrelated to coverage
feedback. Our modified libFuzzer performs input mutation but always discards the test
case after finishing each execution, which is a simple standard implementation in non-
coverage feedback fuzzers. Figure 2 shows the relevant code patch (we mainly modified
the RunOne() function of libFuzzer to only exclude the coverage feedback during the source
code modification. We checked the recompiled fuzzer binary considering the possibility
of compiler optimization erasing important features other than the feedback). And the
result of the modified libFuzzer binary was used to ignore the feedback. Additionally, we
note that the no-coverage version of our libFuzzer does not eliminate the existing code
for measuring code coverage in the fuzzing round. Instead, the modified version ignores
the inspected coverage information and processes every input as if it does not increase the
overall coverage. Because of this, the execution time of a single fuzzing round for both the
original fuzzer and the altered fuzzer would not exhibit a measurable difference in timing
performance. However, when a fuzzer discovers new coverage, it stores the in-memory test
data to external storage (disk), which involves a significant timing delay. Unfortunately,
predicting the pattern and occurrence of such delays is challenging, so we use the execution
counts of the fuzzer as a comparison metric in our evaluation.

Figure 2. The key patch for libFuzzer to optionally discard coverage feedback. We modified RunOne
and its dependent code appropriately, considering compiler optimization, and confirmed the resulting
binary to double-check correctness.

Appl. Sci. 2024, 14, 5939 6 of 15

In case of partially excluding coverage feedback, we need to investigate the detailed
implementation of the libFuzzer coverage feedback engine. In our customization, we
gather partial coverage by changing the granularity of the coverage measurement rather
than selectively keeping/discarding the coverage information. To explain this in detail, we
first need to discuss details of libFuzzer’s coverage measuring system.

3.2. Details of libFuzzer’s Internal and Customization for Partial Coverage

In libFuzzer, code coverage information is specifically referred to as Feature, which
is a libFuzzer-specific terminology for measuring code coverage. libFuzzer converts code
coverage information into multiple features, which include edge coverage, edge counters,
value profile, indirect caller/callee pairs, etc. [18]. Each feature is represented as an
unsigned 32-bit integer value based on an 8-bit counter array representing edges (possible
execution branches between code). For partial coverage measurement customization, we
change the granularity of the counter size to lower the precision/accuracy of the measured
coverage. Specifically, we modify the 8-bit array counter for feature collection to 3 bits
using counter buckets. Counters falling into each bucket 1, 2, 3, 4–7, 8–15, 16–31,
32–127, 128+ are mapped into corresponding integers ranging from 0 to 7. Also, we
change the way libFuzzer handles input via the ReducedInput option. The ReducedInput
option allows for a new input to replace its parent input in case both inputs exhibit the
same code coverage. In partial code coverage customization for lowering the precision,
we discard the mutated test case with the same code coverage, even if it is shorter than
its parent test case. These modifications give us a customized version of libFuzzer with
less coverage feedback capability. We use such an intentionally poor-performing version of
libFuzzer for comparison in our experiment.

3.3. Experiment Methodology and Metric

In our evaluation, all of the recompiled libFuzzer harnesses should eventually repro-
duce crashes at some point in theory. However, we cannot estimate how much time the
lack of coverage feedback might additionally consume for reproducing the bug. Therefore,
we need some baseline timeout policy for running the customized fuzzers. This maximum
can be restricted based on (i) time and (ii) execution count. For example, when running
the customized fuzzers, we can limit the maximum execution time for 48H, or similarly,
we can limit the count of execution to 10 million per se. This is also an experiment design
decision we need to examine. If we choose time as the limit, the comparison experiment
could be unfair because excluding/reducing the quality of coverage feedback could make
the fuzzer run faster, thus increasing the likelihood of reproducing the bug faster than the
original fuzzer. Therefore, we choose maximum count of execution for the comparison metric
in our evaluation. In a nutshell, we execute original/customized libFuzzer harnesses until
they reproduce the crash (or until they reach the limit execution count) and compare their
consumed execution counts as the key metric for fuzzing efficiency.

4. Results

In this section, we explain and analyze the detailed results of our experiment. For
the experiment, we first gathered 44 unique memory bugs by running OSS-Fuzz fuzzers
(libFuzzer harnesses) in our private infrastructure similar to ClusterFuzz. Once we found
such bugs, we utilized them as the ground-truth source for our evaluation. To evaluate the
efficacy of coverage feedback in reproducing such bugs in 44 libFuzzer stubs, we modified
libFuzzer’s behavior by modifying the LLVM-15 source code. For our evaluation platform,
we use an Ubuntu 22.04 64-bit server operating system based on an AMD Ryzen-9
5900 CPU architecture, which supports up to 24 cores. Also, we note that we use the
-workers=5 option (five parallel evaluation) for all libFuzzer harness testing and iterate
the evaluation twice to calculate the average.

Table 1 is the summarized result of our evaluation. The Default column indicates
the fuzzer execution count for reproducing the same bug using the original libFuzzer.

Appl. Sci. 2024, 14, 5939 7 of 15

Partial indicates the fuzzer execution count for reproducing the same bug based on the
partially modified (using coarse-grained coverage feedback information) libFuzzer. No
Cov indicates the fuzzer execution count for reproducing the same bug with the modified
libFuzzer for discarding the coverage feedback information. In the No Cov case, the
number of fuzzer execution counts is omitted if bug reproduction fails even after running
the fuzzer for a sufficiently long time (48 h) and also executing the fuzzing iteration at least
twice the original count for discovery. The Seed column indicates the existence of the
initially given test data set for mutation in fuzzing. If no initial seed is given, libFuzzer
automatically generates a series of random byte sequences for its test input data.

Table 1. Evaluation results for using 44 real-world bugs found with libFuzzer. We have reproduced
each bug with modified versions of Clang with regard to coverage feedback. Default, Partial, and
No Cov columns each indicate running the original/customized version of libFuzzer that measures
coverage information with coarse granularity/customized libFuzzer, which does not provide coverage
feedback. Each number represents the average execution counts required to reproduce the bug. Seed
indicates whether the fuzzer has been provided a proper sample test case at the beginning of fuzzing.

No Project Name Default Partial No Cov Seed Bug Type

1 coturn/FuzzStun 33 43 60 Y Heap BOF
2 example/do_stuff_fuzzer 497 10 K 33 K Y Heap BOF
3 hiredis/format_command_fuzzer 4 K 2 K 5 K - Heap BOF
4 librdkafka/fuzz_regex 522 K 2 M - - Heap BOF

5 libredwg/llvmfuzz 256 K 279 K - - Heap BOF
6 libyaml/libyaml_dumper_fuzzer 4 M 10 M - Y Heap BOF
7 llvm/llvm-special-case-list-fuzzer 28 M - - - Heap BOF
8 lzo/lzo_decompress_target 162 K 134 K 196 K Y Heap BOF
9 ntpsec/FuzzServer 2 K 6 K 6 K Y Heap BOF
10 open62541/fuzz_mdns_message 33 K 11 K 32 K Y Heap BOF
11 openbabel/fuzz_obconversion_smiles 402 1 K 701 - Heap BOF
12 plan9port/fuzz_libsec 46 72 56 - Heap BOF
13 pupnp/FuzzIxml 33 K 15 K 1 K Y Heap BOF
14 readstat/fuzz_format_sas7bcat 285 K 580 K 13 M Y Heap BOF
15 readstat/fuzz_format_sav 5 M 6 M - Y Heap BOF
16 ruby/fuzz_ruby_gems 3 M 3 M - - Heap BOF
17 serenity/FuzzILBMLoader 5 M 5 M - - Heap BOF
18 simd/simd_load_fuzzer 29 K 52 K - - Heap BOF
19 vlc/vlc-demux-dec-libFuzzer 262 263 186 - Heap BOF
20 vulkan-loader/json_load_fuzzer 54 K 84 K 127 K Y Heap BOF
21 c-blosc2/decompress_chunk_fuzzer 451 M 67 M - Y Negative Size Param
22 fluent-bit/cmetrics_decode_fuzz 3 K 1 K 4 K - Invalid Free
23 vulkan-loader/instance_create_fuzzer 20 K 5 K 4 K Y Invalid Free
24 vulkan-loader/instance_enumerate_fuzzer 19 K 3 K 9 K Y Invalid Free
25 augeas/augeas_fa_fuzzer 2 K 183 3 K - SEGV
26 bloaty/fuzz_target 2 M 2 M 3 M Y SEGV

27 fluent-bit/cmetrics_decode_fuzz 731 M 9739 M - - SEGV
28 glog/fuzz_demangle 20 K 15 K - - SEGV
29 haproxy/fuzz_cfg_parser 507 K 616 K - - SEGV
30 hiredis/format_command_fuzzer 12 K 2 K 215 K - Heap BOF
31 ibmswtpm2/fuzz_tpm_server 9 K 11 K 2 M - SEGV
32 libbpf/bpf-object-fuzzer 120 K 94 K 119 K Y SEGV

33 libical/libical_extended_fuzzer 623 K 1 M - - SEGV
34 libredwg/llvmfuzz 561 K 159 K - - SEGV
35 oatpp/fuzz_mapper 7 M 5 M - - SEGV
36 pcapplusplus/FuzzTargetNg 187 128 145 Y SEGV
37 php/php-fuzz-execute 924 K 625 K 2 M Y SEGV
38 php/php-fuzz-function-jit 32 K 42 K 66 K Y SEGV
39 wabt/read_binary_interp_fuzzer 353 K 212 K - - SEGV
40 wabt/read_binary_ir_fuzzer 60 M 51 M - - SEGV
41 augeas/augeas_api_fuzzer 67 K 70 K - - UAF
42 augeas/augeas_escape_name_fuzzer 1 M 1 M - - UAF
43 c-blosc2/decompress_frame_fuzzer 168 K 121 K - Y Heap BOF
44 cups/FuzzCUPS 15 K 14 K 21 K Y Heap BOF

The evaluation table shows a discernible relationship between the No Cov fuzzer’s
result and the Seed. It is noteworthy that the initial seed is manually crafted by the open-
source developers and thus contains crucial information regarding data structure and
format. The evaluation results based on our test data set suggest that the influence of the
initial seed is significantly greater than the detailed mechanism of the coverage feedback

Appl. Sci. 2024, 14, 5939 8 of 15

feature. A total of 15 out of 20 cases of bug reproduction failures in the no-coverage
experiment lacked initial seed data. However, in cases where a proper initial seed was
given (e.g., highlighted with red color in the table), the difference in performance for
reproducing the bug was relatively insignificant (typically, all cases found the same bug
within the range of x2 to x3 fuzzing execution attempts). On the other hand, in cases where
no initial seed was given, the performance of the no-coverage fuzzer was significantly
degraded (e.g., highlighted with yellow color in the table). The stochastic tendency in our
evaluation table indicates that it would be better to investigate the efforts (engineering,
manpower) for providing proper initial seeds for test cases rather than enhancing/adopting
better coverage feedback features in some extreme cases.

Other factors, such as the type of bug and data parser category, did not affect the
evaluation data in a significant way. Nevertheless, we have investigated such issues as
well and provide related information in Appendix A. Interestingly, in some cases, coarse
granularity coverage feedback fuzzing showed better efficiency (finding the same bug
more quickly) compared with the original. The reason for such a phenomenon might be
explained with some example cases that we analyze in Section 5.

Overall, it is evident that coverage feedback enhances the performance of fuzzing
and thus increases the likelihood of discovering unknown bugs in a more efficient way.
However, our study suggests that if the target system (such as a closed-source proprietary
application) requires significant efforts and costs for applying the coverage feedback feature,
it would be better to invest the limited resources in other perspectives such as providing
high-quality initial test cases that include various structures and logical semantics of the
application with static analysis.

5. Discussion

In this section, we discuss special cases where feedback information could be extremely
beneficial for finding new code coverage and opposite cases where feedback would be
useless for expanding the code coverage. We note that the example cases we discussed in
this section are special edge cases to help analyze and interpret our evaluation. However,
we note that such cases are relatively common as we can quickly find it from real-world
open-source repositories.

5.1. Example Case Where Coverage Feedback Is Beneficial

In Listing 1, a parser code snippet in one of the OSS-Fuzz projects (ntpsec-secure
network time protocol implementation) demonstrates taking an array of 16-bit array
data from the client as a potentially malicious input. In this example, each value in 16 bits
of data determines which code to execute next. As 16 bits is a relatively small bit space to
explore based on randomness, the fuzzer will quickly test all possible 65,536 cases and find
new functions for additional data processing. The new function (e.g., nts_next_protocol())
triggered by specific data in this case subsequently processes the same input orthogonal to
previously processed data (e.g., bytes of the buff array from the previous loop iterations).
Therefore, in this case, a randomly discovered test case (that happens to trigger a new
function) for invoking such a function is valuable to remember (the genetic algorithm in
fuzzing applies more mutation attempts in the future to interesting inputs). Therefore,
feedbacking and storing this special test case for future input mutation is beneficial for
finding additional code coverage.

Listing 1. An example case where feedback information can effectively expand code coverage
(ntpsec/FuzzClient).

1 # include " l i b n t p . h"
2 # include " ntp . h"
3 # include " ntp_proto . h"
4 . . .
5 bool fuzz (u i n t 8 _ t * buff , i n t s i z e) {
6 //While the buff has more than 4 bytes , there i s data to process
7 while (s i z e >= 4) {

Appl. Sci. 2024, 14, 5939 9 of 15

8 u i n t 1 6 _ t type = (u i n t 1 6 _ t *) buf f ;
9 buff += 2 ;

10 i n t length = (u i n t 1 6 _ t *) buf f ;
11 buff += 2 ;
12 s i z e −= 4 ;
13

14 switch (type) {
15 case n t s _ n e x t _ p r o t o c o l _ n e g o t i a t i o n :
16 nego_next_protocol (& buff , &s i z e) ;
17 break ;
18 case n t s _ a l g or i t h m _ n e go t i a t i o n :
19 nego_algorithm(& buff , &s i z e) ;
20 break ;
21 case nts_new_cookie :
22 new_cookie(& buff , &s i z e) ;
23 break ;
24 . . .
25 d e f a u l t :
26 //skip current data
27 buff += length ;
28 s i z e −= length ;
29 break ;
30 }
31 }
32

33 re turn 0 ;
34 }

5.2. Example Case Where Fine-Grained Coverage Feedback Is Ineffective

Listing 2 demonstrates a detailed example case in Apache-APR from the OSS-Fuzz
project, where coverage expansion based on fine-grained (counting the execution attempt
of the same code location and considering a greater execution count as a new code cov-
erage) feedback is useless. For example, the SKIP_WHITESPACE macro implementation is
responsible for counting white space characters from the given input byte stream. In this
implementation, libFuzzer will provide feedback as a new coverage for every white-space
character appended to the mutated input, as the block execution count will increase pro-
portionate to the number of white-space characters. However, this feedback and coverage
expansion do not actually contribute to finding a meaningful code path at all. However, the
fuzzer will keep accumulating such mutated test cases because of the coverage feedback
result. This could hinder the fuzzer’s efficiency and might explain some of the evaluation
results in Table 1 where coarse-grained feedback demonstrated better performance.

Listing 2. Example code snippet from the Apache-APR implementation demonstrating useless
coverage finding due to inline-counter feedback.

1 # include " apr . h"
2 # include " a p r _ s t r i n g s . h"
3 # include " apr_pr ivate . h"
4 # include " a p r _ l i b . h"
5 . . .
6

7 # def ine SKIP_WHITESPACE(cp) \
8 f o r (; * cp == ’ ’ || * cp == ’\ t ’ ;) { \
9 cp ++; \

10 } ;
11

12 # def ine CHECK_QUOTATION(cp , isquoted) \
13 isquoted = 0 ; \
14 i f (* cp == ’ " ’) { \
15 isquoted = 1 ; \
16 cp ++; \
17 } \
18 e l s e i f (* cp == ’ \ ’ ’) { \
19 isquoted = 2 ; \

Appl. Sci. 2024, 14, 5939 10 of 15

20 cp ++; \
21 }
22 . . .

5.3. Example Case Where Coverage Feedback Is Meaningless

Listing 3 represents an example implementation for checking the integrity of the PNG
image header. In this case, checking the code coverage feedback might be totally useless
considering that the probability of the fuzzer randomly matching the PNG signature or CRC
checksum is practically zero. This is dependent on how the memcmp or integer value com-
parison is implemented. More specifically, more coverage can be measured if the comparison
takes different execution cycles upon different input data although their byte length is the
same. If the comparison is atomic (e.g., executed instruction sequence for entire comparison is
identical even if two given data for comparison partially matches or not), the probability of the
fuzzer discovering a new code coverage is 1 over 2 to the 64th in the case of the PNG signature
match and 1 over 2 to the 32nd for the CRC check. To handle special cases such as file signature
match, libFuzzer typically maintains dictionary or supplementary data structure such as
the Table of Recently Compared data (TORC) to discover such special data, regardless
of coverage feedback. Building a good dictionary is more important than coverage feedback
in such cases. In the case of a CRC integrity check example, there is no feasible way for
the fuzzer to automatically solve the condition solely based on coverage feedback. On the
other hand, one may use more detailed and fine-grained program behavior measurement
techniques. For example, cmplog of AFL++ [19] and Sanitizer Coverage in libFuzzer
provide fine-grained measurements that allow for the detailed assessment of processed data.
With such advanced fuzzing support features, it could be possible to automatically solve such
conditions in a small amount of time based on implementation details.

Listing 3. Example implementation of PNG header integrity checking. Coverage feedback informa-
tion does not help the fuzzer find a new code path (integrity check success) in such a case.

1 # include " png . h"
2 # include " c r c . h"
3 . . .
4

5 // Check the PNG signature
6 const u i n t 8 _ t png_signature [8] = { 1 3 7 , 80 , 78 , 71 , 13 , 10 , 26 , 1 0 } ;
7 i f (memcmp(png_data , png_signature , 8) != 0) {
8 // Not a PNG f i l e
9 re turn −1;

10 }
11

12 // next 17 bytes to header (IHDR chunk bytes) .
13 u i n t 3 2 _ t f i l e _ c r c = * (u i n t 3 2 _ t *) (png_data + 28) ;
14 u i n t 3 2 _ t memory_crc = c a l c u l a t e _ c r c 3 2 (png_data + 8 , 17) ;
15

16 i f (f i l e _ c r c != memory_crc) {
17 // I n t e g r i t y Check Fa i l ed
18 re turn −1;
19 }
20

21 // parser cont inues . . .

6. Limitations and Future Work

In this paper, we have investigated the efficacy of coverage feedback and fuzzing
results to provide a guideline for assessing the cost-effectiveness of applying coverage feed-
back features to closed-source systems such as proprietary firmware in IoT or UAV devices.
In industry, many closed-source UAV systems, such as the DJI drone, have their dedicated
SoC hardware, which requires an extensive engineering effort to apply fuzzing to [20].
Researchers trying to apply fuzzing to such systems struggle to receive feedback, such as
code coverage increments and crash events. Although there are a few ways to measure code

Appl. Sci. 2024, 14, 5939 11 of 15

coverage without utilizing source code via emulation or debugging features [21], applying
such techniques to other proprietary systems remains challenging. Despite the evaluation
and analysis conducted in this paper, quantifying the efficacy of fuzzing and the cost of
altering a system (e.g., to support coverage-guided fuzzing) cannot be performed in a
straightforward manner, as various factors must be considered, including CPU architecture
support, operating system support, hardware interfaces, and so forth. Considering all of
these factors to determine the cost of applying coverage-guided fuzzing would be a chal-
lenging future task. Although we do not provide a straightforward answer regarding the
efficacy of fuzzing and the cost of coverage measurement, we hope our analysis and evalua-
tion results can aid future research directions and be utilized as a ground-truth reference for
this purpose.

7. Related Works
7.1. Analyzing Coverage Metrics

Wang et al. introduced the concept of sensitivity in coverage-guided fuzzing, which
can be utilized to compare different coverage metrics in fuzzing [22]. This previous research
systematically examined the impact of various coverage metrics on fuzzing performance.
Using a formally defined concept of sensitivity, their research evaluated a wide range of
metrics, including basic branch coverage, context-sensitive branch coverage, and memory-
access-aware branch coverage, with the AFL tool on extensive datasets. The evaluation
results indicate that more sensitive coverage metrics generally lead to quicker and more
frequent bug discoveries. Additionally, different metrics tend to find distinct sets of bugs,
and the optimal metric may vary at different stages of the fuzzing process. The main
difference between such previous works and ours is that we intend to investigate the cost
versus gain of utilizing coverage feedback in fuzzing in terms of closed-source systems,
which impose significant engineering challenges for developing coverage-guided fuzzers.

7.2. Fuzzing Closed Systems

As fuzzing became a popular and standard way for discovering memory errors in
software, researchers started to adopt fuzzing to special systems such as closed-source
embedded systems (e.g., UAV firmware, satellite firmware, IoT device firmware, etc.).
Applying fuzzing to such systems raises significant challenges in measuring code coverage
due to the impossibility of source-code instrumentation. Measuring code coverage for
binary-only applications is feasible based on QEMU-AFL [23]; however, applying such
fuzzers still requires a compatible operating system and CPU architecture (e.g., standard
Linux and Intel/ARM architecture). Special systems such as satellite firmware are usually
based on the SPARC Leon-3 [24] CPU architecture with the RTEMS [25] real-time operating
system or VxWorks [26] systems. UAV firmwares such as the DJI drone firmware use
proprietary systems with multiple SoC environments [20]. Moreover, such firmwares are
often signed/encrypted to prevent any modification at the binary level [27]. Applying
fuzzing techniques to such systems is feasible; however, supporting coverage feedback as
in popular open-source-based fuzzers requires massive system porting and engineering.
Jang et al. [10] recently proposed a system for applying coverage feedback-based fuzzers
to embedded firmwares and partially recovered code fragments. In the study, the authors
defined a concept called fuzzability to test if a fragment of binary could be fuzzed via
conventional feedback-based fuzzers. However, their evaluation suggests that applying
coverage feedback-based fuzzing to such systems/environments is highly costly (in terms
of system engineering) and inefficient. This paper addresses such research problems and
conducts an extensive fuzzing evaluation based on 92 real-world bugs found by OSS-Fuzz.

7.3. Previous Fuzzing Works

Recent advancements in fuzzing have significantly improved the efficiency and effec-
tiveness of finding bugs. This section summarizes related works regarding various fuzzing
approaches, highlighting key contributions and their methodologies.

Appl. Sci. 2024, 14, 5939 12 of 15

Coverage-based fuzzing is a standard approach where the fuzzer aims to maximize
the coverage of code paths during execution. The key idea in coverage fuzzing is us-
ing genetic algorithms to selectively preserve mutated inputs based on their contribu-
tion to expanding code coverage, thus significantly increasing the likelihood of discover-
ing new code paths. To this end, various researchers have suggested novel approaches.
Böhme et al. [9] discuss the reliability of coverage-based fuzzer benchmarking, emphasizing
the need for consistent and reliable benchmarks in evaluating fuzzers. Similarly, ref. [28]
introduced coverage-based greybox fuzzing as a Markov chain, laying the groundwork for
other subsequent fuzzing techniques.

Application-aware fuzzing techniques, such as VUzzer [5], adapt fuzzing strategies
based on application-specific knowledge, leading to a more effective identification of vul-
nerabilities. CollAFL [29] and FairFuzz [30] propose path-sensitive and targeted mutation
strategies, respectively, to enhance coverage and effectiveness. Hawkeye [31] focuses on
specific program paths or vulnerabilities, directing the fuzzer’s efforts toward areas of
interest. JITfuzz [32] specifically targets Just-in-Time compilers in JVMs, highlighting the
applicability of fuzzing in diverse software environments.

Integrating fuzzing with other analysis techniques has also shown promise. SAFL [33]
combines symbolic execution with guided fuzzing to improve testing coverage, while
Zeror [34] accelerates fuzzing with coverage-sensitive tracing and scheduling. Hardware-
assisted fuzzing, as demonstrated by kAFL [35], leverages hardware features to improve
the feedback mechanism and efficiency of fuzzing kernels and operating systems. Similarly,
though based on software-only techniques, full-speed fuzzing [21] aims to reduce overhead
through coverage-guided tracing, enhancing the speed and efficiency of fuzzing processes
based on the debug interrupt feature.

Network protocol-specific fuzzing has also gained attention with tools like AFLNET [36],
which adapts greybox fuzzing for network protocols, and Fw-fuzz [37], focusing on firmware
network protocols. These tools address the unique challenges of fuzzing network interactions
and embedded systems. For IoT devices and firmwares, FIRM-COV [38] introduces a high-
coverage greybox fuzzing framework optimized for IoT firmware through process emulation.
This paper explores the effectiveness of coverage feedback in fuzzing considering their expensive
porting cost in IoT and embedded firmware systems.

8. Conclusions

This paper uncovers the details of how and when code coverage feedback is ben-
eficial or not. Our research revealed that while coverage-guided fuzzing benefits most
scenarios to some extent, its effectiveness is substantially influenced by multiple factors
such as the existence of an initial seed corpus, type of data parser, and amount of code base
(line of code). Such information is especially valuable in situations requiring substantial
effort to implement coverage feedback fuzzing, such as with closed-source or embedded
system firmwares. By evaluating 44 real-world bugs from OSS-Fuzz, we found detailed
correlations between coverage feedback and external factors. We hope researchers can
reference our findings in designing fuzzing systems for closed-source applications, such as
UAV/IoT firmware.

Author Contributions: Conceptualization, D.J. and C.K.; methodology, J.K. (Jaemin Kim); software,
J.K. (Jiho Kim); validation, W.I., M.J. and B.C.; writing—original draft preparation, D.J.; writing—
review and editing, D.J.; visualization, J.K. (Jamin Kim); supervision, C.K.; project administration, D.J.;
funding acquisition, B.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Convergence Security Core Talent Training Business
Support Program grant number IITP-2024-RS-2023-00266615, and the APC was funded by the KRIT
(Korea Research Institute for defense Technology planning and advancement) grant funded by the
Defense Acquisition Program Administration (DAPA) (KRIT-CT-22-074) and was also supported by a
grant from Kyung Hee University in 2023 (KHU-20230880).

Appl. Sci. 2024, 14, 5939 13 of 15

Data Availability Statement: The original data presented in the study are openly available in oss-
fuzz-lab at https://github.com/Jminis/oss-fuzz-lab (acessed on 20 March 2024).

Conflicts of Interest: Authors Jaemin Kim and Chongkyung Kil were employed by the company CW
Research Inc. The remaining authors declare that the research was conducted in the absence of any
commercial or financial relationships that could be construed as a potential conflict of interest.

Appendix A

Table A1 is a table summarizing the entire libFuzzer harness we utilized for our
evaluation. We manually analyzed related source codes to identify and categorize parser
types and other information and cross-checked the relevance to coverage feedback.

Table A1. Summarized information of bugs we used in the evaluation. LoC stands for Line of
Code (C/C++). To check the LoC, we manually downloaded all relevant github source codes from
Dockerfile provided by OSS-Fuzz project. We have categorized each parser type based on their
fuzzed target API implementation.

No Project Name Fuzzer Name LoC Category/Description

1 coturn FuzzStun 40,351 Network Packet Parser/Parsing and validating the STUN protocol message
2 example do_stuff_fuzzer 67 Syntax Language Parser/Checking for mismatches with certain strings
3 hiredis format_command_fuzzer 9552 Syntax Language Parser/Parsing redis commands that include format specifiers
4 librdkafka fuzz_regex 138,892 Syntax Language Parser/Interpreting and compiling regular expressions
5 libredwg llvmfuzz 873,276 Multimedia Data Parser/Parsing dwf files in different formats, such as binary, dxj, and json
6 libyaml libyaml_dumper_fuzzer 10,529 Syntax Language Parser/Parsing and dumping a YAML data
7 llvm llvm-special-case-list-fuzzer 8,261,434 Syntax Language Parser/Creating SpecialCaseList
8 lzo lzo_decompress_target 13,127 Stream Data Parser/Perform decompression based on the Lempel–Ziv–Oberhumer algorithm
9 ntpsec FuzzServer 62,158 Network Packet Parser/Interpreting a packet according to the NTS protocol
10 open62541 fuzz_mdns_message 152,191 Network Packet Parser/Parsing network packets according to the mDNS protocol
11 openbabel fuzz_obconversion_smiles 306,793 Multimedia Data Parser/Interpreting the input as a chemical data format
12 plan9port fuzz_libsec 410,170 Syntax Language Parser/Parsing and printing the input as an ASN.1 element
13 pupnp FuzzIxml 38,138 Syntax Language Parser/Parsing the input as an XML document
14 readstat fuzz_format_sas7bcat 32,281 Multimedia Data Parser/Parsing the structure and content of SAS catalog files
15 readstat fuzz_format_sav 32,281 Multimedia Data Parser/Parsing the input as SAV file format
16 ruby fuzz_ruby_gems 411,797 Syntax Language Parser/Call ruby gems and library functions (date, regexp, json, etc.) with the input
17 serenity FuzzILBMLoader 845,258 Multimedia Data Parser/Parsing the ILBM image format in the Serenity operating system
18 simd simd_load_fuzzer 265,725 Multimedia Data Parser/Interpreting the input data as an image
19 vlc vlc-demux-dec-libFuzzer 626,259 Multimedia Data Parser/Handling the input using VLC’s demuxing functionalities
20 vulkan-loader json_load_fuzzer 54,897 Syntax Language Parser/Parsing the data as the json format
21 c-blosc2 decompress_chunk_fuzzer 117,051 Stream Data Parser/Validating and decompressing the input with a Blosc compressor
22 fluent-bit cmetrics_decode_fuzz 1,277,129 Stream Data Parser/Decoding the data with different decoders (OpenTelemetry, Msgpack, Prometheus)
23 vulkan-loader instance_create_fuzzer 54,897 Syntax Language Parser/Parsing the data as a json config file and creating the Vulkan instance
24 vulkan-loader instance_enumerate_fuzzer 54,897 Syntax Language Parser/Parsing the data as a json config file and enumerating instance extensions
25 augeas augeas_fa_fuzzer 26,553 Syntax Language Parser/Interpreting and compiling regular expressions
26 bloaty fuzz_target 11,553 Multimedia Data Parser/Parsing the input to analyze the structure and size
27 fluent-bit cmetrics_decode_fuzz 1,277,129 Stream Data Parser/Decoding the data with different decoders (OpenTelemetry, Msgpack, Prometheus)
28 glog fuzz_demangle 9729 Syntax Language Parser/Interpreting and converting mangled names (symbols) into demangled forms
29 haproxy fuzz_cfg_parser 239,548 Syntax Language Parser/Interpreting the input as a HAProxy’s configuration file
30 hiredis format_command_fuzzer 9552 Syntax Language Parser/Parsing redis commands that include format specifiers
31 ibmswtpm2 fuzz_tpm_server 46,963 Network Packet Parser/Interpreting the input as the commands and responding by the TPM protocol
32 libbpf bpf-object-fuzzer 124,043 Stream Data Parser/Parsing the input as a BPF object
33 libical libical_extended_fuzzer 47,640 Syntax Language Parser/Interpreting the input as the iCalendar data format
34 libredwg llvmfuzz 873,276 Multimedia Data Parser/Parsing dwf files in different formats, such as binary, dxj, and json
35 oatpp fuzz_mapper 32,794 Syntax Language Parser/Interpreting the input as json data and converting it into an oatpp object
36 pcapplusplus FuzzTargetNg 89,528 Network Packet Parser/Interpreting the input as a PCAP file and parsing packets
37 php php-fuzz-execute 1,182,120 Syntax Language Parser/Interpreting the input as a PHP code and executing it
38 php php-fuzz-function-jit 1,182,120 Syntax Language Parser/Interpreting the input as a PHP code and executing it
39 wabt read_binary_interp_fuzzer 763,941 Syntax Language Parser/Parsing the input conforming to the WebAssembly binary format
40 wabt read_binary_ir_fuzzer 763,941 Syntax Language Parser/Parsing the input conforming to the WebAssembly binary format
41 augeas augeas_api_fuzzer 26,553 Syntax Language Parser/Interpreting the input as the config file and parsing it with node operation APIs
42 augeas augeas_escape_name_fuzzer 26,553 Syntax Language Parser/Escaping the input and finding matches of a path expression
43 c-blosc2 decompress_frame_fuzzer 117,051 Stream Data Parser/Creating chunks with the input and decompressing with a Blosc compressor
44 cups FuzzCUPS 170,349 Syntax Language Parser/Interpreting the input as a PostScript code and executing it

References
1. Miller, B.P.; Fredriksen, L.; So, B. An empirical study of the reliability of UNIX utilities. Commun. ACM 1990, 33, 32–44. [CrossRef]
2. Manès, V.J.; Han, H.; Han, C.; Cha, S.K.; Egele, M.; Schwartz, E.J.; Woo, M. The art, science, and engineering of fuzzing: A survey.

IEEE Trans. Softw. Eng. 2019, 47, 2312–2331. [CrossRef]
3. Google. OSS-Fuzz: Continuous Fuzzing for Open Source Software. Available online: https://github.com/google/oss-fuzz

(accessed on 20 March 2024).
4. Fu, Y.F.; Lee, J.; Kim, T. autofz: Automated Fuzzer Composition at Runtime. arXiv 2023, arXiv:2302.12879.
5. Rawat, S.; Jain, V.; Kumar, A.; Cojocar, L.; Giuffrida, C.; Bos, H. VUzzer: Application-aware Evolutionary Fuzzing. In Proceedings

of the NDSS, San Diego, CA, USA, 26 February–1 March 2017; Volume 17, pp. 1–14.

https://github.com/Jminis/oss-fuzz-lab
http://doi.org/10.1145/96267.96279
http://dx.doi.org/10.1109/TSE.2019.2946563
https://github.com/google/oss-fuzz

Appl. Sci. 2024, 14, 5939 14 of 15

6. Dolan-Gavitt, B.; Hulin, P.; Kirda, E.; Leek, T.; Mambretti, A.; Robertson, W.; Ulrich, F.; Whelan, R. Lava: Large-scale automated
vulnerability addition. In Proceedings of the 2016 IEEE Symposium on Security and Privacy (SP), San Jose, CA, USA, 22–26 May
2016; pp. 110–121.

7. Metzman, J.; Szekeres, L.; Simon, L.; Sprabery, R.; Arya, A. Fuzzbench: An open fuzzer benchmarking platform and service. In
Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, Athens, Greece, 23–28 August 2021; pp. 1393–1403.

8. Poet, M. Achieving 100% Code Coverage: Is It Worth It? Available online: https://methodpoet.com/100-code-coverage/
(accessed on 28 February 2024).

9. Böhme, M.; Szekeres, L.; Metzman, J. On the reliability of coverage-based fuzzer benchmarking. In Proceedings of the 44th
International Conference on Software Engineering, Pittsburgh, PA, USA, 25–27 May 2022; pp. 1621–1633.

10. Jang, J.; Son, G.; Lee, H.; Yun, H.; Kim, D.; Lee, S.; Kim, S.; Jang, D. Fuzzability Testing Framework for Incomplete Firmware
Binary. IEEE Access 2023, 11, 77608–77619. [CrossRef]

11. Feng, X.; Sun, R.; Zhu, X.; Xue, M.; Wen, S.; Liu, D.; Nepal, S.; Xiang, Y. Snipuzz: Black-box fuzzing of iot firmware via message
snippet inference. In Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security, Virtual,
15–19 November 2021; pp. 337–350.

12. Chen, J.; Diao, W.; Zhao, Q.; Zuo, C.; Lin, Z.; Wang, X.; Lau, W.C.; Sun, M.; Yang, R.; Zhang, K. IoTFuzzer: Discovering Memory
Corruptions in IoT Through App-based Fuzzing. In Proceedings of the NDSS, San Diego, CA, USA, 18–21 February 2018.

13. Google. ClusterFuzz: Coverage-Guided vs. Blackbox Fuzzing. Available online: https://google.github.io/clusterfuzz/reference/
coverage-guided-vs-blackbox/ (accessed on 20 March 2024).

14. Atlassian. Code Coverage: What Is It and How Do You Measure It? Available online: https://www.atlassian.com/continuous-
delivery/software-testing/code-coverage (accessed on 28 February 2024).

15. Buechner, F. Is 100% Code Coverage Enough? 2008. Available online: https://www.agileconnection.com/sites/default/files/
article/file/2013/XUS252268366file1_0.pdf (accessed on 20 March 2024)

16. Ivanković, M.; Petrović, G.; Just, R.; Fraser, G. Code coverage at Google. In Proceedings of the 2019 27th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of Software Engineering, Tallinn, Estonia, 26–30
August 2019; pp. 955–963.

17. Fioraldi, A.; Maier, D.; Eißfeldt, H.; Heuse, M. {AFL++}: Combining incremental steps of fuzzing research. In Proceedings of the
14th USENIX Workshop on Offensive Technologies (WOOT 20), Online, 11 August 2020.

18. LLVM LibFuzzer Documentation. Available online: https://llvm.org/docs/LibFuzzer.html (accessed on 28 February 2024).
19. Wiebing, S.J.; Rooijakkers, T.; Tesink, S. Improving AFL++ CmpLog: Tackling the Bottlenecks. In Science and Information Conference;

Springer: Cham, Switzerland, 2023; pp. 1419–1437.
20. Schiller, N.; Chlosta, M.; Schloegel, M.; Bars, N.; Eisenhofer, T.; Scharnowski, T.; Domke, F.; Schönherr, L.; Holz, T. Drone Security

and the Mysterious Case of DJI’s DroneID. In Proceedings of the NDSS, San Diego, CA, USA, 27 February–3 March 2023.
21. Nagy, S.; Hicks, M. Full-speed fuzzing: Reducing fuzzing overhead through coverage-guided tracing. In Proceedings of the 2019

IEEE Symposium on Security and Privacy (SP), San Francisco, CA USA, 19–23 May 2019; pp. 787–802.
22. Wang, J.; Duan, Y.; Song, W.; Yin, H.; Song, C. Be sensitive and collaborative: Analyzing impact of coverage metrics in greybox

fuzzing. In Proceedings of the 22nd International Symposium on Research in Attacks, Intrusions and Defenses (RAID 2019),
Beijing, China, 23–25 September 2019; pp. 1–15.

23. Zheng, Y.; Davanian, A.; Yin, H.; Song, C.; Zhu, H.; Sun, L. {FIRM-AFL}:{High-Throughput} greybox fuzzing of {IoT} firmware
via augmented process emulation. In Proceedings of the 28th USENIX Security Symposium (USENIX Security 19), Santa Clara,
CA, USA, 14–16 August 2019; pp. 1099–1114.

24. Hou, Z.; Sanan, D.; Tiu, A.; Liu, Y.; Hoa, K.C. An executable formalisation of the SPARCv8 instruction set architecture: A case
study for the LEON3 processor. In Proceedings of the FM 2016: Formal Methods: 21st International Symposium, Limassol,
Cyprus, 9–11 November 2016; Proceedings 21; Springer: Cham, Switzerland, 2016; pp. 388–405.

25. Cederman, D.; Hellström, D.; Sherrill, J.; Bloom, G.; Patte, M.; Zulianello, M. Rtems smp for leon3/leon4 multi-processor devices.
Data Syst. Aerosp. 2014, 180. Available online: https://gedare.github.io/pdf/cederman_rtems_2014.pdf (accessed on 20 March 2024).

26. Clements, A.A.; Carpenter, L.; Moeglein, W.A.; Wright, C. A case study in re-hosting VxWorks control system firmware. Available
online: https://bar2021.moyix.net/bar2021-preprint6.pdf (accessed on 20 March 2024).

27. Vasselle, A.; Maurine, P.; Cozzi, M. Breaking mobile firmware encryption through near-field side-channel analysis. In Proceedings
of the 3rd ACM Workshop on Attacks and Solutions in Hardware Security Workshop, London, UK, 15 November 2019; pp. 23–32.

28. Böhme, M.; Pham, V.T.; Roychoudhury, A. Coverage-based greybox fuzzing as markov chain. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, Vienna, Austria, 24–28 October 2016; pp. 1032–1043.

29. Gan, S.; Zhang, C.; Qin, X.; Tu, X.; Li, K.; Pei, Z.; Chen, Z. Collafl: Path sensitive fuzzing. In Proceedings of the 2018 IEEE
Symposium on Security and Privacy (SP), San Francisco, CA, USA, 21–23 May 2018; pp. 679–696.

30. Lemieux, C.; Sen, K. Fairfuzz: A targeted mutation strategy for increasing greybox fuzz testing coverage. In Proceedings of the
33rd ACM/IEEE International Conference on Automated Software Engineering, Melbourne, Australia, 21–25 September 2020;
pp. 475–485.

https://methodpoet.com/100-code-coverage/
http://dx.doi.org/10.1109/ACCESS.2023.3297888
https://google.github.io/clusterfuzz/reference/coverage-guided-vs-blackbox/
https://google.github.io/clusterfuzz/reference/coverage-guided-vs-blackbox/
https://www.atlassian.com/continuous-delivery/software-testing/code-coverage
https://www.atlassian.com/continuous-delivery/software-testing/code-coverage
https://www.agileconnection.com/sites/default/files/article/file/2013/XUS252268366file1_0.pdf
https://www.agileconnection.com/sites/default/files/article/file/2013/XUS252268366file1_0.pdf
https://llvm.org/docs/LibFuzzer.html
https://gedare.github.io/pdf/cederman_rtems_2014.pdf
https://bar2021.moyix.net/bar2021-preprint6.pdf

Appl. Sci. 2024, 14, 5939 15 of 15

31. Chen, H.; Xue, Y.; Li, Y.; Chen, B.; Xie, X.; Wu, X.; Liu, Y. Hawkeye: Towards a desired directed grey-box fuzzer. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security, Toronto, ON, Canada, 15–19 October 2018;
pp. 2095–2108.

32. Wu, M.; Lu, M.; Cui, H.; Chen, J.; Zhang, Y.; Zhang, L. Jitfuzz: Coverage-guided fuzzing for jvm just-in-time compilers. In
Proceedings of the 2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE), Melbourne, Australia, 14–20
May 2023; pp. 56–68.

33. Wang, M.; Liang, J.; Chen, Y.; Jiang, Y.; Jiao, X.; Liu, H.; Zhao, X.; Sun, J. SAFL: Increasing and accelerating testing coverage
with symbolic execution and guided fuzzing. In Proceedings of the 40th International Conference on Software Engineering:
Companion Proceeedings, Gothenburg, Sweden , 27 May–3 June 2018; pp. 61–64.

34. Zhou, C.; Wang, M.; Liang, J.; Liu, Z.; Jiang, Y. Zeror: Speed up fuzzing with coverage-sensitive tracing and scheduling. In
Proceedings of the 35th IEEE/ACM International Conference on Automated Software Engineering, Virtual, 21–25 December
2020; pp. 858–870.

35. Schumilo, S.; Aschermann, C.; Gawlik, R.; Schinzel, S.; Holz, T. {kAFL}:{Hardware-Assisted} feedback fuzzing for {OS} kernels.
In Proceedings of the 26th USENIX security symposium (USENIX Security 17), Vancouver, BC, Canada, 16–18 August 2017;
pp. 167–182.

36. Pham, V.T.; Böhme, M.; Roychoudhury, A. AFLNet: A greybox fuzzer for network protocols. In Proceedings of the 2020 IEEE
13th International Conference on Software Testing, Validation and Verification (ICST), Porto, Portugal, 24–28 October 2020;
pp. 460–465.

37. Gao, Z.; Dong, W.; Chang, R.; Wang, Y. Fw-fuzz: A code coverage-guided fuzzing framework for network protocols on firmware.
Concurr. Comput. Pract. Exp. 2022, 34, e5756. [CrossRef]

38. Kim, J.; Yu, J.; Kim, H.; Rustamov, F.; Yun, J. FIRM-COV: High-coverage greybox fuzzing for IoT firmware via optimized process
emulation. IEEE Access 2021, 9, 101627–101642. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1002/cpe.5756
http://dx.doi.org/10.1109/ACCESS.2021.3097807

	Introduction
	Background
	Code Coverage and Fuzzing
	Fuzzing Proprietary System
	Coverage Feedback in libFuzzer
	Utilizing OSS-Fuzz Project

	Materials and Methods
	Modification to libFuzzer for the Experiment
	Details of libFuzzer's Internal and Customization for Partial Coverage
	Experiment Methodology and Metric

	Results
	Discussion
	Example Case Where Coverage Feedback Is Beneficial
	Example Case Where Fine-Grained Coverage Feedback Is Ineffective
	Example Case Where Coverage Feedback Is Meaningless

	Limitations and Future Work
	Related Works
	Analyzing Coverage Metrics
	Fuzzing Closed Systems
	Previous Fuzzing Works

	Conclusions
	Appendix A
	References

