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ABSTRACT As deepfake techniques becomemore sophisticated, the demand for fake facial image detection
continues to increase. Various deepfake detection techniques have been introduced but detecting all types of
deepfake imageswith a singlemodel remains challenging.We propose a technique for detecting various types
of deepfake images using three common traces generated by deepfakes: residual noise, warping artifacts,
and blur effects. We adopted a network designed for steganalysis to detect pixel-wise residual-noise traces.
We also consider landmarks, which are the primary parts of the face where unnatural deformations often
occur in deepfake images, to capture high-level features. Finally, because the effect of a deepfake is similar
to that of blurring, we apply features from various image quality measurement tools that can capture traces
of blurring. The results demonstrate that each detection strategy is efficient, and that the performance of the
proposed network is stable and superior to that of existing detection networks on datasets of various deepfake
types.

INDEX TERMS Deepfake forensics, image forensics, residual noise, warping artifact, image quality
measurement.

I. INTRODUCTION
Deepfake is a technique for creating synthetic content by
naturally changing the human face of the original content
using an autoencoder and generative adversarial network
(GAN) [1]–[3]. In a broad sense, deepfake refers to deformed
or created content that uses deep learning methods (audio
deepfake [4], imaginary people generation [5], etc.) to trick
people. In a narrower sense, deepfake refers to an image or
video of a human face that has been generated using deep
learning methods and can cause malicious effects. Deepfake
in this narrow sense can be classified into three types accord-
ing to the type of manipulation: face-swap, puppet-master,
and attribute-change.

In face-swap deepfakes [6], [7], which is the most common
type, a person’s face is pasted onto that of another person,
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while maintaining the original person’s expression. Previ-
ous face-swap methods consider only the shape, direction,
and skin color of the face, regardless of the original facial
expression. However, in deepfake, face swapping is synthe-
sized by imitating the expression. Nowadays, because anyone
can easily use deepfake face-swap methods on the Internet,
it is already being exploited to naturally synthesize the face
of a famous celebrity into pornography. Only celebrities
have been targeted, because deepfake training requires many
pictures of the same person. However, deepfake synthesis
techniques that use only a few photos have been proposed;
thus, anyone on the street can now be a victim of deep-
fake. Currently, most of the harmful effects of deepfakes fall
under this category in which personal rights can be violated.
Puppet-master deepfakes [8], [9], also called reenactment,
manipulate a target image to follow the movements of the
face, head, and upper body of a source image. As this type
of deepfake does not require the appearance of other faces,
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a more sophisticated synthesis is possible. This technique is
primarily used to create fake news; fake news that synthesizes
the face of a key person (president, prime minister, famous
news anchor, etc.) that can cause mass confusion in society.
Finally, attribute-change techniques [10], [11] canmanipulate
a wide range of visual traits in facial images (hair color, beard,
aging signs, etc.). This type of deepfake can be exploited
by manipulating evidence, such as changing the facial traits
of a criminal captured on camera, causing social confusion.
Many studies are currently in progress to detect deep fakes
that can adversely affect society, but more sophisticated deep-
fake creation and detection avoidance methods are emerging
[12], [13]. A competitive race between more elaborate deep-
fake generations and more accurate detection is underway.

Deepfake images differ in the form and degree of traces
because of the diversity of generating algorithms, facial
characteristics, and postprocessing methods. However, some
tracing forms are commonly observed: generating fine noise
while passing through a GAN or auto-encoder, blurring
caused by resizing and postprocessing, and warping caused
by a failure of facial geometric and illuminance predictions.

In this study, we propose a generalized detection method
using traces to detect three types of deepfake (face-swap,
puppet-master, and attribute-change). To improve detection
performance, we developed a network based on image quality
measurement (IQM) features and warping artifacts extracted
from facial landmarks. Instead of using a general network
of recent algorithms, such as XceptionNet [14], we propose
the use of a network designed for steganalysis to capture
residual noise traces in deepfake images. The experiments
were performed using different types of deepfakes with pub-
lic databases, and we demonstrate that the proposed network
achieves performance stability and is superior to existing
detection networks on datasets of various deepfake types.

Our contributions are summarized as follows:
• We propose a generalized detection method using traces
to detect three types of deepfake: face swap, puppet-
master, and attribute change.

• We developed a network based on image quality mea-
surement (IQM) features and warping artifacts extracted
from facial landmarks.

• We propose using a network designed for steganalysis to
capture residual noise traces in deepfake images.

II. RELATED WORK
A. DEEPFAKE GENERATION METHODS
1) FACE-SWAP
Korshunova et al. [15] suggested training a multi-scale archi-
tecture convolutional neural network (CNN) to paste faces
from one image to another. RSGAN [16] performs natural
face swapping by separating the hair and face in a latent
space. In addition, in combination with existing 3D anal-
ysis technology, the face-swap has become more sophisti-
cated [17], [18]. Li et al. [6] suggested techniques (mask area
adjustment, additional layer in auto-encoder, and effective
post-processing) to obtain better quality face-swap content.

Using these techniques, they built the ‘Celeb-DF’ deepfake
dataset. The DeepFaceLab team [7] released the deepfake
face-swap application. They used aGANwith an autoencoder
and set of attention masks to improve the details of output
images.

2) PUPPET-MASTER
Suwajanakorn et al. [8] proposed a synthesis technique for
manipulating lip shape. By learning the mapping of audio
features to mouth shapes, they created a fake version of a
video of a Barack Obama speech using the target audio.
Tripathy et al. [9] proposed a two-stage GAN using a facial
attribute vector consisting of the head pose and action
unit (AU). This model generates a neutral image with a
central pose and neutral expression from a source image
and transforms it to follow the target image’s attributes.
Rössler et al. [19] introduced a face manipulation dataset
generated by Face2Face [20], which is a technique for facial
reenactment manipulation.

3) ATTRIBUTE-CHANGE
Choi et al. [10] proposed StarGAN, which uses only
a single model for multiple attribute domains, and
Pumarola et al. [21] used facial AU labels that allow the gen-
eration of detailed and continuous facial expression transfor-
mations. Kingma and Dhariwal [11] proposed Glow, which
uses a flow-based generativemodel using invertible 1×1 con-
volution. Glow allows various attribute changes and exhibits
a high quality.

B. DEEPFAKE DETECTION METHODS
In addition to the image forensics of general image modifica-
tions [22]–[24], several deepfake detection techniques have
been proposed [25]–[28]. Matern et al. [29] used color mis-
match in two eyes and noise owing to inaccurate geometric
predictions and inaccurate light predictions. Yan et al. [30]
detected a deepfake using the inconsistency in the 3D
direction between the narrow face area and overall head.
Afchar et al. [25] proposed two simple fake-face detection
networks (Meso-4 and MesoInception4) that exploit meso-
scopic features. Because training is performed with a dis-
tribution in the RGB color space, Li et al. [31] changed
the color space to HSV or YCbCr and detected deepfake
using the statistical difference between the color spaces.
Koopman et al. [32] detected deepfake videos using photo
response non-uniform noise patterns that disappeared when
the facial area was modified. Li et al. [33] identified deep-
fakes by representing the blending boundary determined
using the inconsistencies of the underlying image statis-
tics as grayscale images. Rössler et al. [27] constructed a
dataset for face manipulation detection, published it, and
presented experimental results using existing detection tech-
niques. They showed that extracting only the facial region
and using it as an input image improves performance. The
authors demonstrated that XceptionNet [14] exhibited the
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highest performance among the detection networks used in
their experiment.

Most existing methods detect specific types of deepfake or
use only one strategy to detect deepfakes. However, because
the deepfake types and generation methods are diverse,
detecting fake faces is difficult using a single detection strat-
egy. Furthermore, using a specific feature to detect deepfakes
means that detection can be easily avoided. The proposed
method combines various strategies into a single model for
stable deepfake detection.

FIGURE 1. Sample dataset images.

TABLE 1. Descriptions of datasets.

III. DATASETS
The datasets were collected or generated using representative
methods, as shown in Table 1. The original and deepfake
image datasets were preprocessed for face region detection
and cropping. In dataset generation, deepfake images are
created by applying various deepfake generation methods
to the original images. Because deepfake images are gen-
erated using various combinations of original images, the
number of deepfake images is relatively larger than that of
the original images. Therefore we included the VGG face
dataset [34] to match the numbers in training and testing
equally. Figure 1 represents the original and fake sample
images of each dataset.

A. GENERATING FACE-SWAP IMAGES
We generated face-swap images using a synthesis application
that DeepFaceLab [7] provides. Because this method is based

on an autoencoder with a GAN, numerous facial images of
a specific person are required. The greater the variety and
quantity of a specific person, the better the output quality.
Thus, we collected 40 videos from five different people
(Donald J. Trump, Moon Jae-in, Xi Jinping, Abe Shinzo,
and Kim Jong-un). From these videos, we collected approx-
imately 195 K cropped facial images and then trained the
face-swap models for each person. After training, we gener-
ated 428K face-swap images for all five people for swappable
cases (5P2 = 20). We also included 91 K face-swap images
from the deepfake Detection Challenge (DFDC) [35] training
dataset and 87 K face-swap images fromCeleb-DF [6], which
showed low distortions from various synthesis methods.

B. GENERATING PUPPET-MASTER IMAGES
To build puppet-master datasets, we used the ICFace [9]
model. We used 3,521 frames extracted from randomly
selected videos in the VoxCeleb2 dataset [36] as the target
image datasets. For each image, attribute vectors representing
the head poses and AUs of 17 facial muscles [37] were
extracted using OpenFace [38]. We then randomly sampled
70,420 images from MegaFace [39] and generated 70,420
fake images using an attribute vector. We also included 428 K
images from the FaceForensics [19] dataset, which was gen-
erated using Face2Face [20], a technique for facial reenact-
ment manipulation.

C. GENERATING ATTRIBUTE-CHANGE IMAGES
We built attribute-change datasets using the Glow [11]
model. We randomly selected 38 K images from CelebA-
HQ [40] as source images. In total, 13 relatively valid and
natural attributes (5_o_Clock_shadow, Bags Under Eyes,
Bald, Black Hair, Blond Hair, Bushy Eyebrows, Chubby,
Heavy Makeup, Male, No Beard, Rosy Cheeks, Smiling, and
Young) were chosen for the transformation. Consequently,
we obtained 334 K face images transformed from 38 K
images.

IV. DEEPFAKE IMAGE DETECTION
A. TRACES OF DEEPFAKE
1) RESIDUAL NOISE
Once an image pixel is modified (or synthesized) by image
operations, its relationship with its neighbor is expected to
change, yielding traces with a periodicity that depends on
image operations. To analyze traces of image generation,
residual-domain approaches have been investigated for image
forgery detection [41]. In deepfake detection, residual noise
is a transfiguration trace generated by passing it through an
autoencoder and GAN network filters [42].

Image residuals are affected by the transformationmethods
rather than the image content. Therefore, we propose a feature
extraction method using a deep learning model that can focus
on the residual noise of the deepfake operation. We propose
the use of SRNet [43] to capture residual noise traces in
deepfake images. SRNet, which is designed for steganalysis,
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FIGURE 2. Proposed network architecture for deepfake detection. (a) Detection network structure, (b) details for layer types (LTs) and
landmark block (LB). SC in (a) is an abbreviation for skip connection. In (a), the base network composed of Layer type 1-3 detects
residual noise appearing throughout the image.

is used to concentrate on fine signals by excluding pooling
layers at the front of the network. As the technique for
deepfake generation has developed, distinguishing it from
its content becomes more difficult. Differences between real
and fake images, such as unnatural face collapse, edge of
the pasted face, and unnatural eye and mouth behavior, will
be minimal in high-level features. Therefore, detecting the
residual noise caused by synthesis operations is an important
factor in deepfake detection.

FIGURE 3. Landmark locations and patch examples. The red dots indicate
the landmark locations used in our method.

2) WARPING ARTIFACTS
Owing to inaccurate predictions in facial geometry and light,
deepfake images generate warping artifacts that are use-
ful high-level features for detecting deepfake. For example,
pupils and teeth, which require detailed expressions, are
visually distorted in deepfake images. In addition, boundary
artifacts typically appear on the forehead, chin, or edges of
the face because of pasting. Warping artifacts appear because
of the limitations of deepfake generation technology. The
difference in the size and position of facial components, facial
color, head angle, facial expression, and lighting conditions

between the source and target can cause warping artifacts.
Furthermore, a limited number of photos or videos and a lack
of training can also cause warping artifacts. Warping artifacts
tend to appear in semantic areas of the face, as shown in
Fig. 3. Therefore, we extracted landmark image patches from
semantic face regions to focus on warping artifacts.

3) BLUR EFFECTS
In [26], a deepfake-like dataset was created by blurring facial
regions in images. From this, we inferred that a blur-like
effect exists in deepfake images. This is because of the res-
olution inconsistency and postprocessing that occurs during
the deepfake generation process. The resolution of the inputs
and outputs of deepfake networks is typically fixed, whereas
the resolution of the source or target image is not fixed. Fur-
thermore, the size of the face in the image varied according to
the distance from the camera. Therefore, face image resizing
occurs frequently in the deepfake generation process, and
causes interpolation and blur-like effects.

Owing to the limitations of deepfake generation tech-
niques, the output of a deepfake typically has unnatural
features. In particular, the output of a deepfake generation
network often leaves the boundary owing to the discontinu-
ity between the source and target faces [6]. Textured noise
often occurs in the output. Therefore, postprocessing typi-
cally considers blurring for naturality, among other methods.
Considering this, blur-like effects often occur in deepfake
images, and we exploited this as a trace of deepfake. Blurring
does not make a significant difference when applied to an
already-blurred image. Based on this observation, we applied
a Gaussian filter to face-only images and compared them to
blurred face-only images using IQM tools.

As shown in Table 2, we used the following 17 IQM
tools: Laplacian blur variance (LPV), high-low frequency
index (HLFI) [48], spectral phase error (SPE) [49], spec-
tral magnitude error (SME) [49], gradient-magnitude error
(GME) [44], gradient phase error (GPE) [44], structural con-
tent (SC) [46], average difference (AD) [46], mean square
error (MSE) [47], signal-to-noise ratio (SNR) [50] in dB,
normalized absolute error (NAE) [46], peak signal-to-noise
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TABLE 2. Descriptions of image quality measurements used for trace blur effects.

ratio (PSNR) [51], Laplacian MSE (LMSE) [46], maxi-
mum difference (MD) [46], R-averaged maximum difference
(RAMD) [47], normalized cross-correlation (NCC) [45], and
visual information fidelity (VIF) [52]. Owing to the complex-
ity of the formula, VIF, which is an image quality assessment
index that uses natural scene statistics to quantify the loss of
image information, is excluded in Table 2. In Table 2, G is
the gradient of an image, and GM and GP denote the mag-
nitude and phase of G, respectively. Moreover, F indicates
the Fourier transform operation, and F l and Fh denote the
low and high frequencies in the Fourier domain, respectively.
In addition, ϕ indicates the phase in the Fourier domain, and
L is the Laplacian filter such that L(Ii,j) = Ii+1,j + Ii−1,j +
Ii,j+1 + Ii,j−1 − 4Ii,j.

Figure 4 is an example of the histograms for two IQM
feature values: PSNR and LMSE. The red area represents
the feature values of deepfake images, and the blue area
represents the originals. In PSNR, a higher value rep-
resents a smaller difference between the two compared
images. A higher LMSE value represents a larger difference.
We found that deepfake images tend to have a blurred effect
because they are less affected by the Gaussian filter. There-
fore, we applied IQM features to the proposed network to
capture blur-like traces in deepfake images.

B. DETECTION NETWORK
Figure 2 illustrates the overall architecture of the proposed
network for deepfake detection, where LT and LB denote the
layer type and landmark block, respectively. The numbers in
parentheses are kernel numbers.

To capture residual noise, we propose adopting the SRNet
architecture [43] as the base network. Primarily, SRNet is
used in steganalysis to concentrate on fine signals at the
pixel level. The key method is to not reduce the dimen-
sions at the front of the network by excluding the pool-
ing. In the experimental section, we demonstrate that SRNet
can effectively capture noise traces in deepfake images.
The base network is optimized to detect fine signals but

does not focus on high-level features such as warping
artifacts.

To detect warping artifacts, we extracted 14 landmark
patches where the warping artifacts primarily appeared and
used them as the input of the LB. Unlike the front part of the
base network, a pooling layer was added to the LB because it
does not need to preserve residual noise.

The output of the LB was concatenated with the output of
LT 3 to deliver the warping artifact information. After LT 2,
without a skip connection, we used global average pooling
to prevent overfitting and reduce the number of neurons in
the fully connected layer. Finally, to detect traces of blur
effects, the 17 IQM features computed from the target and
blurred images were concatenated with the output of the
global average pooling after passing through a fully con-
nected layer. Subsequently, the output passed through the last
fully connected layer for two-class classification.

V. EXPERIMENTAL RESULTS
We used 2.88 M images to train and test the proposed net-
work. The size of the fake and original training sets were
2.55 M. For the tests, 320 K fake and original images were
used. The training and tests sets do not include the same
subject such that training data leakage does not occur dur-
ing the training process. For each deepfake dataset experi-
ment, the original images were randomly imported such that
the ratio of fake to original images was 1:1. We used the
Dlib [53] library for preprocessing. Pre-processing included
facial landmark detection and region cropping. As described
in Fig. 3, 12 facial landmark patches were made around the
landmark point of size 32× 32.
The resolution of the input images was 128 × 128. While

constructing the deepfake image dataset for our experiment,
we collected deepfake images from FHD (1920× 1080) and
videos from the DFDC [35] and FaceForensics [19] dataset
(> 640 × 480). We then cropped the facial area from the
images in these datasets, which reduced the input image
size. Because we pre-extracted the facial area, the input size

VOLUME 10, 2022 69035



J. Kang et al.: Detection Enhancement for Various Deepfake Types Based on Residual Noise and Manipulation Traces

FIGURE 4. Histograms of IQM features for original and deepfake images:
(a) PSNR, (b) LMSE, and (c) GME. The blurring operator causes a smaller
effect on deepfake images than on non-fake images.

required to be considerably smaller than the original size.
In addition, most of the cropped facial images had a size of
128 × 128. Therefore, we unified the image input size with
this value.

The model was trained for 10 epochs, with a batch size
of 32. The binary cross-entropy (BCE) loss function was
used, with a learning rate of 0.001. We used the Adam opti-
mizer was used for a smooth learning rate adjustment and
initialized the weight using Kaiming initialization [54].

A. COMPARISON OF THE RESIDUAL-NOISE DETECTOR
Residual noise generated when producing deepfakes is
fine noise at the pixel level. To detect this, we propose

the use of SRNet, which was designed for steganalysis.
To demonstrate the efficiency of the residual noise feature
in deepfake detection, a comparative experiment was con-
ducted with existing well-known convolutional neural net-
work (CNN) models. For comparison, we trained and tested
VGG [55], ResNet [56], DenseNet [57], XceptionNet [14],
and SRNet [43] using our datasets. The environmental setting
was the same as in the proposed network. Table 3 lists the
accuracy of the CNN models for each deepfake type. SRNet,
which focuses on fine noise, exhibits better performance
than existing CNN models that analyze high-level features.
The puppet-master technique does not change the face of
the target person but changes only the expression of the
target. Therefore, a significant difference in appearance was
not observed compared with the other deepfake generation
methods. This is because the puppet-master technique has the
largest difference in detection performance between SRNet
and other network models.

TABLE 3. Accuracy (%) of network models for each type of deepfake.

TABLE 4. Boosted performance by adjusting landmark patches (LM) and
image quality measurement (IQM).

B. BOOSTING PERFORMANCE USING THE PROPOSED
FEATURES
We propose deepfake image detection using warping arti-
facts, blur effects, and residual noise. Landmark patches were
applied to the network to detect warping artifacts and IQM
features between images, and blurred images were used to
capture the blur effect. For blurring, a Gaussian blur filter
with a kernel size of 3, and a Gaussian kernel standard devia-
tion in theX direction of 0.5was used.We tested the effective-
ness of our strategy by applying it to XceptionNet and SRNet,
which exhibited high performance in previous experiments.
In XceptionNet, we concatenated the result of the landmark
block to the middle of the exit flow, and concatenated IQM
features to the input of the final fully connected layer. Table 4
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TABLE 5. Accuracy (%) and AUROC of detection models for each type of deepfake. (Accuracy/AUROC).

shows the effect of applying warping artifact and blur-effect
features to the network. The results show that each strategy
is effective in detecting deepfakes. Furthermore, the network,
which included the combination of each method, showed the
highest performance on the total dataset. The total dataset
refers to the dataset including face-swap, puppet-master, and
attribute-change.

C. COMPARISON TEST AND DISCUSSION
We conducted a comparative experiment between the pro-
posedmethod and other deepfake-detection techniques. In the
experiment, SRNet was used as the base network for the
proposed method. Li and Lyu [26], Afchar et al. [25], and
Rössler et al. [27] with XceptionNet, which exhibited the
highest performance on FaceForensic++, were used for the
comparison. The proposedmodels, XceptionNet andMeso-4,
were trained using our datasets. For ResoNet, we used a
pretrained model for the tests.

Table 5 lists the accuracy and area under the receiver oper-
ating characteristics (AUROCs) of the network models for
each type of deepfake, and Fig. 5 illustrates the receiver oper-
ating characteristic (ROC) curves for each network model
per dataset. Our proposed networks have higher accuracies
and AUROCs than existing deepfake-detection networks in
all datasets. The SRNet+IQM method exhibited a higher
performance than the SRNet+LM+IQM method on datasets
that have relatively more blur-like traces, such as the Celeb-
DF dataset. Similarly, the base+LMmethod was more effec-
tive than the SRNet+LM+IQM method on some datasets
that have few traces of blurring and more traces of warping
artifacts, such as the FaceForensics dataset. When the accu-
racy of SRNet+LM or SRNet+IQM is the highest, the gap
between the highest accuracy value and the accuracy value
of the SRNet+LM+IQM method is always small. However,
on the DFDC and Celeb-DF datasets, the SRNet+LM+IQM
method exhibited an accuracy approximately 4% higher
than that on SRNet+LM and SRNet+IQM respectively.
That is, the detection performance of the SRNet+LM and
SRNet+IQM methods depends relatively more on the deep-
fake generation algorithm. However, the SRNet+LM+IQM
method exhibits stable detection performance for various
deepfake datasets, which is why the SRNet+LM+IQM
method shows the highest accuracy and AUROC values for
the entire dataset.

For time consumption, the IQM feature extraction of our
method required 1.14 seconds, and 1.06 seconds to extract
the landmark patches, which can be drastically shortened
using parallel calculations. Table 6 lists the network exe-
cution times (based on NVIDIA RTX 2080Ti GPU) and
number of network parameters. Compared to XceptionNet,
which showed the best performance on FaceForensics++,
our final network (SRNet+LM+IQM) showed better per-
formance with approximately 60% of the execution time
and 20% of the number of parameters. Furthermore, the
additional number of network parameters and execution time
required to detect blurry traces and warping artifacts were
approximately 157 K and 0.001 s, respectively.

Limitations on the state-of-the-art deepfake detector have
been reported, including a lack of generalization by focus-
ing on specific artifact identification and rapid performance
decreases as deepfake quality improves [58]. Addressing
this, this study alleviated the generalization problem by
detecting deepfakes using various strategies, and insignificant
performance degradation was observed when experimenting
with sophisticated deepfake images using the latest deepfake
generation methods and datasets. Despite these strengths,
some case predictions still fail. For example, an original
image is determined a deepfake because of the rapid move-
ment of a face or overlapped image that occurs when the
scene changes when dividing a video into a frame-by-frame
sequence. In addition, owing to the strategy of detecting
blur effects, blurred images that are not deepfakes are some-
times incorrectly detected. Signal-processing attacks, such as
compression-quality changes and noise additions, can also
interfere with detection.

We discuss adversarial attack in terms of noise addition.
Adversarial attacks are methods that cause errors in a model
by adding perturbations to the image. This perturbation is a
type of noise that is extremely small and has a fatal effect on
the model [59]. Szegedy et al. [59] indicated that deep neural
network (DNN)-based models are vulnerable to adversarial
attacks, and [58] mentioned the problems and limitations of
adversarial attacks when using deep learning models to detect
deepfakes. Currently, studies on defending against adversar-
ial attacks [60], [61] and attack defense techniques [62], [63]
are being actively studied. In future studies, we can improve
the robustness against adversarial attacks using methods such
as adversarial training [59] and defensive distillation [61].
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FIGURE 5. ROC plots for the network models of each deepfake type. (a)-(i) are graphs for the DeepFaceLab, DFDC, Celeb-DF, ICFace,
FaceForensics, Glow, face-swap (DeepFaceLab, DFDC, Celeb-DF), puppet-master (ICFace, FaceForensics), and total datasets, respectively.

TABLE 6. Execution time and number of parameters of deepfake detection networks.

Finally, methods that are more advanced than the dlibwe used
in the landmark patch extraction process are available.We can
expect to further improve performance using state-of-the-art
face detection technology, such as Mediapipe [64], in future
studies.

VI. CONCLUSION
In this study, we proposed a generalized detection method
to detect three types of deepfake techniques: face swap,
puppet-master, and attribute change.We exploited three types
of common traces (residual noise, warping artifacts, and
blur effects) generated by the deepfake process. We applied
them to the proposed network for deepfake detection. First,

a network designed for steganalysis was adopted as the base
network to detect residual noise. Second, landmark patches
were extracted from the semantic facial region to detect
warping artifacts, which are unnatural high-level features.
Finally, we applied IQM features to capture the statistical
characteristics of the blur-like effects of a deepfake. The
results revealed that each detection strategy is effective, and
the performance of the proposed network is superior to that
of existing networks.

From an additional perspective, we focused on determining
deepfakes’ common traces, which are difficult to bypass.
Because detecting image-based traces is more difficult to
bypass than detecting traces of time-based inconsistencies in
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deepfakes, we targeted image features. Because a deepfake
video inherits residual features from image operations, our
approach can be directly adopted for deepfake video detection
pipelines based on frame-by-frame detection. Based on the
proposed method, we plan to expand this study to include a
deepfake video detection method. We hope this method is
robust against signal- and time-based attacks.

REFERENCES
[1] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,

S. Ozair, A. Courville, and Y. Bengio, ‘‘Generative adversarial nets,’’ in
Proc. Adv. Neural Inf. Process. Syst., 2014, pp. 2672–2680.

[2] S. Wen, W. Liu, Y. Yang, T. Huang, and Z. Zeng, ‘‘Generating realistic
videos from keyframes with concatenated GANs,’’ IEEE Trans. Circuits
Syst. Video Technol., vol. 29, no. 8, pp. 2337–2348, Aug. 2019.

[3] A. Malik, M. Kuribayashi, S. M. Abdullahi, and A. N. Khan, ‘‘DeepFake
detection for human face images and videos: A survey,’’ IEEE Access,
vol. 10, pp. 18757–18775, 2022.

[4] J. Damiani, ‘‘A voice deepfake was used to scam a CEO out of $243,000,’’
Forbes, Sep. 2019.

[5] T. Karras, T. Aila, S. Laine, and J. Lehtinen, ‘‘Progressive growing of
GANs for improved quality, stability, and variation,’’ in Proc. Int. Conf.
Learn. Represent., 2018, pp. 1–26.

[6] Y. Li, X. Yang, P. Sun, H. Qi, and S. Lyu, ‘‘Celeb-DF: A large-
scale challenging dataset for DeepFake forensics,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020,
pp. 3207–3216.

[7] DeepFaceLab. Accessed: Nov. 12, 2020. [Online]. Available: https://
github.com/iperov/DeepFaceLab

[8] S. Suwajanakorn, S. M. Seitz, and I. Kemelmacher-Shlizerman, ‘‘Synthe-
sizing Obama: Learning lip sync from audio,’’ ACMTrans. Graph., vol. 36,
no. 4, pp. 1–13, 2017.

[9] S. Tripathy, J. Kannala, and E. Rahtu, ‘‘ICface: Interpretable and control-
lable face reenactment using GANs,’’ in Proc. IEEE Winter Conf. Appl.
Comput. Vis. (WACV), Mar. 2020, pp. 3385–3394.

[10] Y. Choi, M. Choi, M. Kim, J.-W. Ha, S. Kim, and J. Choo, ‘‘StarGAN:
Unified generative adversarial networks for multi-domain image-to-image
translation,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
Jun. 2018, pp. 8789–8797.

[11] D. P. Kingma and P. Dhariwal, ‘‘Glow: Generative flow with invertible
1 × 1 convolutions,’’ in Proc. Adv. Neural Inf. Process. Syst., 2018,
pp. 10215–10224.

[12] M. S. Rana, M. N. Nobi, B. Murali, and A. H. Sung, ‘‘DeepFake detection:
A systematic literature review,’’ IEEE Access, vol. 10, pp. 25494–25513,
2022.

[13] Y. Li, P. Sun, H. Qi, and S. Lyu, ‘‘Toward the creation and obstruction
of deepfakes,’’ in Handbook of Digital Face Manipulation and Detection.
Cham, Switzerland: Springer, 2022, pp. 71–96.

[14] F. Chollet, ‘‘Xception: Deep learning with depthwise separable convo-
lutions,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jul. 2017, pp. 1251–1258.

[15] I. Korshunova, W. Shi, J. Dambre, and L. Theis, ‘‘Fast face-swap using
convolutional neural networks,’’ in Proc. IEEE Int. Conf. Comput. Vis.
(ICCV), Oct. 2017, pp. 3677–3685.

[16] R. Natsume, T. Yatagawa, and S. Morishima, ‘‘RSGAN: Face swapping
and editing using face and hair representation in latent spaces,’’ 2018,
arXiv:1804.03447.

[17] L. Tran and X. Liu, ‘‘On learning 3D face morphable model from in-the-
wild images,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 43, no. 1,
pp. 157–171, Jan. 2019.

[18] Z. Geng, C. Cao, and S. Tulyakov, ‘‘3D guided fine-grained face manipu-
lation,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2019, pp. 9821–9830.

[19] A. Rössler, D. Cozzolino, L. Verdoliva, C. Riess, J. Thies, and M. Nießner,
‘‘FaceForensics: A large-scale video dataset for forgery detection in human
faces,’’ 2018, arXiv:1803.09179.

[20] J. Thies, M. Zollhofer, M. Stamminger, C. Theobalt, and M. Nießner,
‘‘Face2Face: Real-time face capture and reenactment of RGB videos,’’
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016,
pp. 2387–2395.

[21] A. Pumarola, A. Agudo, A. M. Martinez, A. Sanfeliu, and
F. Moreno-Noguer, ‘‘GANimation: Anatomically-aware facial animation
from a single image,’’ in Proc. Eur. Conf. Comput. Vis. (ECCV), 2018,
pp. 818–833.

[22] J.-U. Hou and H.-K. Lee, ‘‘Detection of hue modification using photo
response nonuniformity,’’ IEEE Trans. Circuits Syst. Video Technol.,
vol. 27, no. 8, pp. 1826–1832, Aug. 2017.

[23] J. Wang, T. Li, X. Luo, Y.-Q. Shi, and S. K. Jha, ‘‘Identifying computer
generated images based on quaternion central moments in color quaternion
wavelet domain,’’ IEEE Trans. Circuits Syst. Video Technol., vol. 29, no. 9,
pp. 2775–2785, Sep. 2019.

[24] J. Wang, H. Wang, J. Li, X. Luo, Y.-Q. Shi, and S. K. Jha, ‘‘Detecting dou-
ble JPEG compressed color images with the same quantization matrix in
spherical coordinates,’’ IEEE Trans. Circuits Syst. Video Technol., vol. 30,
no. 8, pp. 2736–2749, Aug. 2020.

[25] D. Afchar, V. Nozick, J. Yamagishi, and I. Echizen, ‘‘MesoNet: A compact
facial video forgery detection network,’’ in Proc. IEEE Int. Workshop Inf.
Forensics Secur. (WIFS), Dec. 2018, pp. 1–7.

[26] Y. Li and S. Lyu, ‘‘Exposing deepfake videos by detecting face warp-
ing artifacts,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR) Workshops, Jun. 2019, pp. 1–7.

[27] A. Rossler, D. Cozzolino, L. Verdoliva, C. Riess, J. Thies, and M. Nießner,
‘‘FaceForensics++: Learning to detect manipulated facial images,’’ in
Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019, pp. 1–11.

[28] H. Liu, X. Li, W. Zhou, Y. Chen, Y. He, H. Xue, W. Zhang, and N. Yu,
‘‘Spatial-phase shallow learning: Rethinking face forgery detection in fre-
quency domain,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2021, pp. 772–781.

[29] F. Matern, C. Riess, and M. Stamminger, ‘‘Exploiting visual artifacts to
expose deepfakes and face manipulations,’’ in Proc. IEEE Winter Appl.
Comput. Vis. Workshops (WACVW), Jan. 2019, pp. 83–92.

[30] X. Yang, Y. Li, and S. Lyu, ‘‘Exposing deep fakes using inconsistent head
poses,’’ inProc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP),
May 2019, pp. 8261–8265.

[31] H. Li, B. Li, S. Tan, and J. Huang, ‘‘Identification of deep net-
work generated images using disparities in color components,’’ 2018,
arXiv:1808.07276.

[32] M. Koopman, A. M. Rodriguez, and Z. Geradts, ‘‘Detection of deepfake
video manipulation,’’ in Proc. 20th Irish Mach. Vis. Image Process. Conf.
(IMVIP), 2018, pp. 133–136.

[33] L. Li, J. Bao, T. Zhang, H. Yang, D. Chen, F. Wen, and B. Guo, ‘‘Face
X-ray for more general face forgery detection,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020, pp. 5001–5010.

[34] Q. Cao, L. Shen, W. Xie, O. M. Parkhi, and A. Zisserman, ‘‘VGGFace2:
A dataset for recognising faces across pose and age,’’ in Proc. 13th IEEE
Int. Conf. Autom. Face Gesture Recognit. (FG), May 2018, pp. 67–74.

[35] B. Dolhansky, R. Howes, B. Pflaum, N. Baram, and C. Canton Fer-
rer, ‘‘The deepfake detection challenge (DFDC) preview dataset,’’ 2019,
arXiv:1910.08854.

[36] J. S. Chung, A. Nagrani, and A. Zisserman, ‘‘VoxCeleb2: Deep speaker
recognition,’’ in Proc. Interspeech, Sep. 2018, pp. 1086–1090.

[37] P. Ekman and W. Friesen, Facial Action Coding System: A Technique for
the Measurement of Facial Movement. Palo Alto, CA, USA: Consulting
Psychologists Press, 1978.

[38] B. Amos, B. Ludwiczuk, and M. Satyanarayanan, ‘‘OpenFace: A general-
purpose face recognition library with mobile applications,’’ CMU School
Comput. Sci., Pittsburgh, PA, USA, Tech. Rep. CMU-CS-16-118, 2016.

[39] I. Kemelmacher-Shlizerman, S. M. Seitz, D. Miller, and E. Brossard,
‘‘The MegaFace benchmark: 1 million faces for recognition at scale,’’
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016,
pp. 4873–4882.

[40] Z. Liu, P. Luo, X. Wang, and X. Tang, ‘‘Deep learning face attributes
in the wild,’’ in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Dec. 2015,
pp. 3730–3738.

[41] H. Li, W. Luo, X. Qiu, and J. Huang, ‘‘Identification of various image
operations using residual-based features,’’ IEEE Trans. Circuits Syst. Video
Technol., vol. 28, no. 1, pp. 31–45, Jan. 2018.

[42] N. Yu, L. Davis, andM. Fritz, ‘‘Attributing fake images to GANs: Learning
and analyzing GAN fingerprints,’’ in Proc. IEEE/CVF Int. Conf. Comput.
Vis. (ICCV), Oct. 2019, pp. 7556–7566.

[43] M. Boroumand, M. Chen, and J. Fridrich, ‘‘Deep residual network for ste-
ganalysis of digital images,’’ IEEE Trans. Inf. Forensics Security, vol. 14,
no. 5, pp. 1181–1193, May 2019.

VOLUME 10, 2022 69039



J. Kang et al.: Detection Enhancement for Various Deepfake Types Based on Residual Noise and Manipulation Traces

[44] A. Liu, W. Lin, and M. Narwaria, ‘‘Image quality assessment based
on gradient similarity,’’ IEEE Trans. Image Process., vol. 21, no. 4,
pp. 1500–1512, Apr. 2012.

[45] J. Galbally and S. Marcel, ‘‘Face anti-spoofing based on general image
quality assessment,’’ in Proc. 22nd Int. Conf. Pattern Recognit., Aug. 2014,
pp. 1173–1178.

[46] A. M. Eskicioglu and P. S. Fisher, ‘‘Image quality measures and their
performance,’’ IEEE Trans. Commun., vol. 43, no. 12, pp. 2959–2965,
Dec. 1995.

[47] I. Avcıbaaş, B. Sankur, and K. Sayood, ‘‘Statistical evaluation of image
quality measures,’’ J. Electron. Imag., vol. 11, no. 2, pp. 206–223,
Apr. 2002.

[48] X. Zhu and P. Milanfar, ‘‘A no-reference sharpness metric sensitive to blur
and noise,’’ in Proc. Int. Workshop Quality Multimedia Exp., Jul. 2009,
pp. 64–69.

[49] N. B. Nill and B. Bouzas, ‘‘Objective image quality measure derived from
digital image power spectra,’’ Proc. SPIE, vol. 31, no. 4, pp. 813–826,
1992.

[50] S. Yao,W. Lin, E. Ong, and Z. Lu, ‘‘Contrast signal-to-noise ratio for image
quality assessment,’’ in Proc. IEEE Int. Conf. Image Process., Sep. 2005,
p. 397.

[51] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, ‘‘Image quality
assessment: From error visibility to structural similarity,’’ IEEE Trans.
Image Process., vol. 13, no. 4, pp. 600–612, Apr. 2004.

[52] H. R. Sheikh and A. C. Bovik, ‘‘Image information and visual quality,’’
IEEE Trans. Image Process., vol. 15, no. 2, pp. 430–444, Feb. 2006.

[53] D. E. King, ‘‘Dlib-ml: A machine learning toolkit,’’ J. Mach. Learn. Res.,
vol. 10, pp. 1755–1758, Jan. 2009.

[54] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Delving deep into rectifiers:
Surpassing human-level performance on ImageNet classification,’’ inProc.
IEEE Int. Conf. Comput. Vis. (ICCV), Dec. 2015, pp. 1026–1034.

[55] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks for
large-scale image recognition,’’ 2014, arXiv:1409.1556.

[56] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778.

[57] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, ‘‘Densely
connected convolutional networks,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 4700–4708.

[58] Y. Mirsky and W. Lee, ‘‘The creation and detection of deepfakes: A
survey,’’ ACM Comput. Surv., vol. 54, no. 1, pp. 1–41, Jan. 2022.

[59] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, ‘‘Intriguing properties of neural networks,’’ 2013,
arXiv:1312.6199.

[60] R. E. Sutanto and S. Lee, ‘‘Real-time adversarial attack detection with
deep image prior initialized as a high-level representation based blurring
network,’’ Electronics, vol. 10, no. 1, p. 52, Dec. 2020.

[61] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, ‘‘Distillation as
a defense to adversarial perturbations against deep neural networks,’’ in
Proc. IEEE Symp. Secur. Privacy (SP), May 2016, pp. 582–597.

[62] G. Ryu, H. Park, and D. Choi, ‘‘Adversarial attacks by attaching noise
markers on the face against deep face recognition,’’ J. Inf. Secur. Appl.,
vol. 60, Aug. 2021, Art. no. 102874.

[63] C. Bisogni, L. Cascone, J.-L. Dugelay, and C. Pero, ‘‘Adversarial attacks
through architectures and spectra in face recognition,’’ Pattern Recognit.
Lett., vol. 147, pp. 55–62, Jul. 2021.

[64] C. Lugaresi, J. Tang, H. Nash, C. McClanahan, E. Uboweja, M. Hays,
F. Zhang, C.-L. Chang, M. Guang Yong, J. Lee, W.-T. Chang, W. Hua,
M. Georg, and M. Grundmann, ‘‘MediaPipe: A framework for building
perception pipelines,’’ 2019, arXiv:1906.08172.

JIHYEON KANG received the B.S. degree from
the School of Computer Science and Electri-
cal Engineering, Handong Global University,
South Korea, in 2015, and the M.S. and Ph.D.
degrees from the Graduate School of Infor-
mation Security, Korea Advanced Institute of
Science and Technology (KAIST), South Korea,
in 2017 and 2021, respectively. He is currently
working at Webtoon AI, NAVER WEBTOON
Corporation, South Korea. His research interests

include machine learning and computer vision.

SANG-KEUN JI received the B.S. degree from
the Department of Computer and Software Engi-
neering, Kumoh National Institute of Technology,
South Korea, in 2013, and the M.S. and Ph.D.
degrees from the Department of Computer Sci-
ence, Korea Advanced Institute of Science and
Technology (KAIST), South Korea, in 2015 and
2020, respectively. His current research interests
includemultimedia security and image processing.

SANGYEONG LEE is currently a Senior majoring
in big data at Hallym University, South Korea.
She is also an Undergraduate Researcher at the
Multimedia Computing Laboratory. Her research
interests include multimedia forensics, computer
vision, and deep learning.

DAEHEE JANG received the Ph.D. degree in infor-
mation security from KAIST, in 2019. He worked
as a Postdoctoral Researcher at Georgia Tech, until
2020. He is currently an Assistant Professor with
the Department of Security Engineering, Sungshin
Women’s University. He participated in various
global hacking competitions (such as DEFCON
CTF) and won several awards. He received the
Special Prize from 2016 KISA Annual Event for
finding 0-day security vulnerabilities in many soft-

ware products. He is also the Founder of pwnable.kr wargame—an education
platform for training hacking skills.

JONG-UK HOU received the B.S. degree in infor-
mation and computer engineering from Ajou Uni-
versity, South Korea, in 2012, and the M.S. and
Ph.D. degrees from KAIST, South Korea, in 2014,
and 2018, respectively. He has been an Assistant
Professor with the School of Software, Hallym
University, since 2019, and a Principal Investiga-
tor of the Multimedia Computing Laboratory. His
major interests include various aspects of infor-
mation hiding, point cloud processing, computer

vision, machine learning, and multimedia signal processing.

69040 VOLUME 10, 2022


