
Computers & Security 113 (2022) 102569

Contents lists available at ScienceDirect

Computers & Security

journal homepage: www.elsevier.com/locate/cose

EmuID : Detecting presence of emulation through microarchitectural

characteristic on ARM

Yeseul Choi a , Yunjong Jeong

a , Daehee Jang

b , Brent Byunghoon Kang

a , ∗, Hojoon Lee

c , ∗

a Graduate School of Information Security, KAIST, South Korea
b Department of Convergence Security Engineering, Sungshin Women’s University, South Korea
c Department of Computer Science and Engineering, Sungkyunkwan University, South Korea

a r t i c l e i n f o

Article history:

Received 30 November 2020

Revised 26 October 2021

Accepted 29 November 2021

Available online 2 December 2021

Keywords:

Software analysis

Software emulation

Emulation detection

Microarchitectural characteristics

ARM Architecture

a b s t r a c t

Software emulation is at the core of efficient automated software analysis. It allows efficient use of com-

puting resources by running multiple instances on a single machine. Also, software emulation naturally

provides a strong sandboxing that contains the analyzed target software. Software emulation techniques

and principles have been implemented in dynamic binary translators (DBI) and emulators used exten-

sively in practice. Transparency of emulation is one of the essential aspects of emulation engines. That is,

hiding the presence of emulation from the software that is being emulated is vital in many use cases of

software emulation (e.g., malware analysis). Detecting the presence of emulation through various meth-

ods and preventing such exploits have been an important topic in the field. Emulation detection is com-

monly used in protecting commercial software against reverse engineering or abused by malware de-

velopers who intend to sabotage their malware analysis. Many works have proposed methods for em-

ulation detection, while others introduced mitigations. In this paper, we present EmuID that exploits a

peculiar microarchitectural caveat of the ARM architecture to detect emulation. Our method is accurate,

implementation-agnostic, and robust. Our evaluations show that our method detects ARM execution in

well-known emulation engines on ARM (i.e., ARM-on-ARM) as well as cross-architecture ARM emula-

tion on the x86 architecture (i.e., ARM-on-x86. Also, mitigation of our approach would require non-trivial

modifications to emulation engines, unlike the heuristics-based detection methods that can be readily

mitigated once the mechanisms are known.

© 2021 Elsevier Ltd. All rights reserved.

1

a

e

u

f

e

t

a

i

a

t

n

2

L

p

c

h

u

s

s

t

t

t

o

u

a

i

c

h

0

. Introduction

Software emulation has been an integral part of large-scale and

utomated software analysis. Multiple instances of an emulated

xecution environment can be deployed on a single machine to

se the computing power efficiently. Software emulation also ef-

ectively sandboxes the running program. With full control of the

mulated program’s execution, software emulators can aptly con-

ain the behavior of the emulated software within a certain bound-

ry. The principles of software emulation have been implemented

n the form of dynamic binary instrumentation (DBI) and program

nd system emulators.

Software emulation has been utilized in practice for a long

ime. Dynamic binary instrumentation (DBI) engines such as Dy-

amoRio (Bruening et al., 2003) and Intel PIN Tools (Luk et al.,

005) are highly sophisticated and mature and have numerous
∗ Corresponding authors.

E-mail addresses: brentkang@kaist.ac.kr (B.B. Kang), hojoon.lee@skku.edu (H.

ee).

d

F

i

p

ttps://doi.org/10.1016/j.cose.2021.102569

167-4048/© 2021 Elsevier Ltd. All rights reserved.
ractical use cases (D’Elia et al., 2019). These tools allow flexible

ode injection and transformation on the emulated software and

ence widely used in software analysis. QEMU (Bellard, 2005), a

serspace and full-system emulator, also builds on top of the same

et of software emulation principles and techniques.

Software emulation is often deployed for dynamic analysis of

oftware that is protected through obfuscation (e.g., packing). Since

he program code and data are not visible in the static analysis, au-

omated dynamic analysis tools are built using emulation to moni-

or the program’s behavior (D’Elia et al., 2019). Automated analysis

f malware and protected software is one such example.

Many software emulation engines seek robustness against em-

lation detection techniques. Many malware or protected software

re equipped with a so-called anti-emulation feature that checks

f it is inside an emulation environment and terminates when the

heck reports true. A reliable method without false-positives that

etects the presence of emulation is pivotal in anti emulation.

rom the perspectives of the developers of emulation engines, it is

mportant to mitigate such detection and ensure emulation trans-

arency for many use cases of software emulation.

https://doi.org/10.1016/j.cose.2021.102569
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2021.102569&domain=pdf
mailto:brentkang@kaist.ac.kr
mailto:hojoon.lee@skku.edu
https://doi.org/10.1016/j.cose.2021.102569

Y. Choi, Y. Jeong, D. Jang et al. Computers & Security 113 (2022) 102569

n

i

o

2

K

2

s

s

2

o

a

p

a

e

r

u

S

o

e

2

t

f

E
t

m

t

c

e

t

m

d

s

i

p

r

W

s

t

o

t

e

w

k

c

n

W

i

e

o

2

n

u

s

m

c

2

r

n

g

s

b

m

o

c

t

e

j

t

e

(

c

b

w

–

r

b

t

s

g

f

c

e

t

i

b

o

b

o

e

e

c

d

o

B

2

c

i

p

i

s

There are many works that proposed emulation detection tech-

iques using features that break transparency, demonstrating the

mportance of the issue. Many works have presented new meth-

ds that can detect the presence of emulation (Falcón and Riva,

012; Hron and Jermář, 2014; Jang et al., 2019; Jing et al., 2014;

irsch et al., 2018; Li and Li, 2014; Petsas et al., 2014; Polino et al.,

017; Raffetseder et al., 2007; Sun et al., 2016). In response, re-

earchers have proposed alternative software emulation engine de-

igns that are immune to such detection methods (Bruening et al.,

012; Polino et al., 2017). Many existing emulation detection meth-

ds depend on heuristics; the presence of various artifacts may

rise due to emulation. For instance, X. Li et al. and T. Raffets et al.

resented emulation detection by catching a certain artifact such

s memory usage and time overhead (Li and Li, 2014; Raffetseder

t al., 2007). Catching an incomplete emulation of the actual envi-

onment such as page permission and self-modifying code was also

sed to detect emulation (Hron and Jermář, 2014; Jang et al., 2019;

un et al., 2016). A number of studies explored detection meth-

ds using various artifacts or behaviors (Falcón and Riva, 2012; Jing

t al., 2014; Kirsch et al., 2018; Petsas et al., 2014; Polino et al.,

017). Since these methods exploit artifacts that are specific to cer-

ain emulation engines, their methods are not generalizable to dif-

erent types of emulation engines.

In this paper, we present an emulation detection method called

muID that takes advantage of the microarchitectural caveat of

he ARM architecture. Our novel detection method shows that

aintaining emulation transparency is much more challenging

han previously thought.The detection method uses a meticulously

rafted code that causes a peculiar cache behavior in native ex-

cution environments. The cache behavior is, however, difficult

o reproduce in emulated execution environments. Our detection

ethod is deterministic, implementation-agnostic, and robust. Ad-

itionally, EmuID code has a small footprint and execution time,

uch that it can be embedded into any application. It is determin-

stic because it successfully detects the presence of emulation 100

ercent of the time, as our evaluation shows, and does not require

epeated measurements nor a heuristically determined threshold.

e also present an evaluation that shows our detection method

uccessfully detects all well-known software emulation engines on

he ARM architecture and the cross-architecture emulation engine

n the x86 architecture. Our method is robust; mitigating our de-

ection method will require non-trivial modifications to the inher-

nt mechanisms of the software emulation engines, to the point

here the mitigation would have an impact on target emulation.

We summarize our contributions as the following:

• We introduce a robust software emulation detection method

called EmuID that takes advantage of the cache behavior of

ARM architecture.

• We provide an in-depth analysis of the detection method’s

mechanism and its effect on the processor cache in a native vs.

emulated execution environment.

• We evaluated the accuracy of the method against well-known

software emulation engines on the ARM architectures and the

cross-architecture emulation engine on the x86 architecture. In

addition, we confirmed that there are no false positives by test-

ing the method on 155 ARM devices.

• We discuss possible mitigations of the attack, although we con-

cluded that none of them were practical.

The rest of this paper proceeds as the following: we provide

nowledge that can help readers better understand our paper and

over the related work in Section 2 . The design and key mecha-

ism of our detection method are explained in detail in Section 4 .

e present the evaluation results that show the accuracy and

mplementation-agnostic aspects of our method. In Section 6 , we
2
xplain why modifying the software emulation engines to mitigate

ur method would be challenging. We will conclude in Section 7 .

. Background

In this section, we explain the background information that is

ecessary for understanding our work. Since our work exploits the

nique cache behavior of the ARM architecture that is difficult for

oftware emulation to mimic, it is necessary that we explain the

echanism of software emulation and ARM cache coherency in a

oncise manner.

.1. Software emulation

In this paper, we use the term software emulation to

efer to dynamic binary instrumentation tools such as Dy-

amoRio (Bruening et al., 2003), Pin (Luk et al., 2005), and Val-

rind (Nethercote and Seward, 2007) as well as user-level/full-

ystem emulator like QEMU (Bellard, 2005). DBI and emulators

uild on the same set of principles and operate in a vastly similar

anner. However, we do not include virtualization in our definition

f the term software emulation. Today’s virtualization runs guest

ode directly on the processor with hardware-assisted virtualiza-

ion features and involves only a small amount of emulation.

The techniques and principles of the two categories of software

mulation are similar, but the two are geared towards specific ob-

ectives. Pin and DynamoRio focus on user program instrumen-

ation. On the other hand, QEMU offers user program execution

mulation as well as the same architecture and cross-architecture

e.g., emulating an ARM processor on x86) but does not focus on

ode instrumentation. The two categories of software emulation

oth perform a translation process on the original code – with or

ithout instrumentation or into different or identical architecture

and execute the process’s product.

In software emulation, the target program is never executed di-

ectly on the hardware. The target program’s code is fetched one

asic block at a time, then translated to be placed on the transla-

ion code cache before execution. The translation process may in-

ert code for analysis or transform the original code with a user-

iven set of transformation rules. Dynamic binary translators take

ull control of the target program’s control flow. Only translated

ode cache is executed and it returns its control flow back to the

mulation engine. Branch, jump or call instructions whose destina-

ions do not already reside in the code cache are instrumented to

nvoke the translator. In turn, the translator would fetch the next

asic block to be executed and creates an instrumented version

f it inside the translation cache. The translator also makes the

ranch or call instructions that point to the instrumented version

f the target program instead of the original target.

Fig. 1 is the abstracted version of this process. This way, the

mulation software maintains full control over the target program

xecution.

Our detection method utilizes the fact that the granularity of a

ache in the translation cache is a block. To aid the reader’s un-

erstanding, we will be using the following notation to denote the

riginal code and its counterpart in the translation cache: T: B →

 T

.2. I-Cache and D-Cache coherency on ARM

Modern architectures such as ARM and x86 employ a split

ache model on L1 caches in which there are separate caches for

nstructions (I-cache) and data (D-cache). Such design increases the

erformance since the program has distinct access patterns regard-

ng instruction fetch and data accesses. For instance, program in-

tructions are seldom modified, unlike data. In this L1 cache de-

Y. Choi, Y. Jeong, D. Jang et al. Computers & Security 113 (2022) 102569

Fig. 1. Translation process in emulation. During the translation process, the origi-

nal binary and the emulation code for one basic block are loaded into the trans-

lation code cache and then executed. After executing one basic block in the code

cache, the emulation environment repeats the above process for the next basic

block. The example figure shows that basic block 7 is converted and executed after

basic blocks 1, 2, 5, and 6 executes.

s

s

t

c

t

I

h

f

i

m

m

(

i

c

o

3

D

a

a

l

n

i

h

t

3

s

h

o

2

Q

a

g

b

c

t

t

s

a

b

m

b

3

m

H

n

S

a

i

s

p

s

a

m

a

t

(

c

v

h

w

p

Q

3

a

t

o

2

Q

a

g

b

c

B

d

p

p

i

t

t

t

t

K

t

e

b

e

i

E
f

3

t

a

f

ign, which is often referred to as modified Harvard architecture or

plit cache design , instruction fetches from memory are stored in

he I-Cache and data fetches or stores are cached in the D-Cache .

The subject that is responsible for maintaining I-cache and D-

ache coherency is architecture-dependent. In the x86 architec-

ure, the processor itself detects incoherencies and invalidates the

-cache upon update on its counterpart in D-cache. On the other

and, all existing ARM architecture variants do not have such a

eature; this means that the software is responsible for avoid-

ng problems that can stem from the issue. Hence, programmers

ust maintain coherency when writing software that exhibits code

odification behavior such as the ones that involve Just-In Time

JIT) compilation or Self-Modifying Code (SMC) (Jacob, 2013). I-cache

nvalidation can be achieved with the SYS_cacheflush system

all on AARCH32 and a user-level instruction such as IC variants

f instructions are available on AARCH64 .

. Related work

We explain related works in the field of emulation detection.

etecting software emulation has been an interest of researchers

nd practitioners; malware or protected software often includes

nti-emulation techniques such that it refuses to run in emu-

ated environments to avoid being analyzed. EmuID presents a

ovel detection method that uses the unique architectural behav-

or of the ARM architecture. Our technique differs from the existing

euristics-based approaches that are often trivially mitigated once

he heuristic is known.

.1. Transparent software emulation

Transparency is one of the requirements for correctness and

ecurity in an emulation environment. Every emulation system

as its own trade-offs between transparency and performance

r emulation capabilities (Aarch64 port, 2020; Bruening et al.,

012; Hazelwood and Klauser, 2006; Nethercote and Seward, 2007;

emu internals, 2012; Zyngie, 2015). One aspect of transparency is

bout the correctness of the emulation. While the emulated pro-

ram is heavily modified for the sake of emulation, the apparent

ehavior and execution results must be identical to its native exe-

ution (Anton et al., 1998; Bruening et al., 2012). Another aspect of

ransparency is the robustness of emulation against emulation de-

ectors. Since software emulation is often leveraged for automated

oftware analysis, the robustness against detection is an important

spect of emulation engines. If it is discovered that the software is
3
eing emulated, the software that wants to hide its logic, especially

alware or commercial software, can make analysis more difficult

y not executing the intended behavior.

.2. Dynamic binary instrumentation

DBI has developed steadily in response to the need to instru-

ent and modify programs at runtime since DynInst (Buck and

ollingsworth, 20 0 0) appeared. Pin (Luk et al., 2005), Dy-

amoRIO (Bruening et al., 2003), and Valgrind (Nethercote and

eward, 2007) are the most well-known DBI frameworks. They

re most widely used in academia and industry and support var-

ous architectures and operating systems. The Pin is a closed

ource framework that strongly supports the instrumentation of

rograms running on Intel architecture. DynamoRIO is an open-

ource framework that provides excellent performance and en-

bles analysis of entire instructions and direct low-level code

odification. Valgrind instruments using a generated intermedi-

te representation that makes it portable to a variety of architec-

ures, so there is a relative performance penalty. In addition, Frida

 Karl Trygve Kalleberg, 2016), which allows users to write analysis

odes in JavaScript directly, Strata (Scott et al., 2003), which pro-

ides software dynamic translation even if the architecture of the

ost and guest are different, and libdetox (Payer and Gross, 2011),

hich advances security through a design that considers trans-

arency. In addition, various DBI frameworks (Mulliner et al., 2013;

uarkslab, 2019; Quynh, 2018) have been introduced.

.3. Transparent software emulation

Transparency is an important the requirements for correctness

nd security in an emulation environment. Every emulation sys-

em has its own trade-offs between transparency and performance

r emulation capabilities (Aarch64 port, 2020; Bruening et al.,

012; Hazelwood and Klauser, 2006; Nethercote and Seward, 2007;

emu internals, 2012; Zyngie, 2015). One aspect of transparency is

bout the correctness of the emulation. While the emulated pro-

ram is heavily modified for the sake of emulation, the apparent

ehavior and execution results must be identical to its native exe-

ution (Anton et al., 1998; Bruening et al., 2012).

There are several works that discuss the issue of transparency.

ruening et al. state, the further we push transparency, the more

ifficult it is to implement, while at the same time fewer ap-

lications require it, discusses possible solutions to each trans-

arency problem, and suggests guidelines that should be followed

n DBI design (Bruening et al., 2012). Julian et al. show that the at-

acker can interfere with the inspection and interposition capabili-

ies of the emulation framework if isolation is not satisfied among

he three properties (isolation, inspection, interposition) essential

o the monitoring system proposed by Garfinkel et al. (2003) ;

irsch et al. (2018) .

In this work, we discuss mainly the emulation transparency in

erms of robustness against emulation detectors. Since software

mulation is often leveraged for automated software analysis, ro-

ustness against detection is an important aspect of emulation

ngines. Emulation detection techniques like the one we propose

n this work, break the transparency of emulation. We propose

muID in the hopes of improving the emulation transparency of

uture emulation engine implementations.

.4. Detecting software emulation using heuristic features

Raffetseder et al. proposed a method to detect the sys-

em emulator using the fact that, in the emulator, the CR3

ccess time takes longer, and the cache invalidation speed is

aster (Raffetseder et al., 2007). Daehee Jang et al. proposes a fast

Y. Choi, Y. Jeong, D. Jang et al. Computers & Security 113 (2022) 102569

a

v

f

b

t

d

e

P

e

e

e

p

2

o

t

R

e

2

m

t

d

p

q

p

3

h

t

t

(

t

t

t

t

i

d

m

b

3

r

a

m

f

2

i

T

a

d

p

v

e

a

b

t

o

t

t

a

a

Fig. 2. Pseudocode of EmuID .

4

d

T

e

p

a

S

t

t

d

a

n

4

s

t

w

g

s

t

a

nd accurate anti-emulation technique that utilizes misaligning the

ectorization (Jang et al., 2019). Recently, various attack techniques

or detecting DBI environment for DBI detection and evasion have

een published. There are several various techniques to detect DBI

ools, such as DynamoRIO or Pin tool. Xiaoning Li et al. use the

ifference of file-related information and resource usage to detect

mulation environment (Li and Li, 2014). Ke Sun et al. and Mario

olino et al. detect using the features that appear because the

mulation environment uses the translation code cache (Polino

t al., 2017; Sun et al., 2016). Julian Kirsch et al. detects emulation

nvironment using code cache/instrumentation artifacts, JIT com-

iler over-head, and runtime environment artifacts (Kirsch et al.,

018). Francisco Falc’n et al. uses various features, including time

verhead of dynamic library loading, code pointers, memory con-

ents and permissions, and interaction with the OS (Falcón and

iva, 2012). Martin Hron et al. also mention detecting an emulation

nvironment using a page permission violation (Hron and Jermář,

014).

Many of the existing heuristics-based detection methods can be

itigated with a reasonable amount of effort. Once the heuristic

hat is used for detection is known, emulation engines can be up-

ated in response to the detection method. However, EmuID ex-

loits the architectural character of the ARM architecture and re-

uires fundamental changes to emulation engines, as we will ex-

lain.

.5. Emulation detection in android

Various anti-emulation techniques in the Android environment

ave also been proposed. Jingn, Yiming, et al. showed research

hat automatically collects and analyzes more than 10,0 0 0 heuris-

ic artifacts for detection in the Android emulation environment

 Jing et al., 2014). Petsas, Thanasis, et al. also propose anti-analysis

echniques that malware can use to bypass dynamic analysis in

he Android emulation environment (Petsas et al., 2014). Emula-

ion detection technology is presented in three ways according to

he analysis method in this paper: static, dynamic, and VM-related

ntricacies. In addition, there are two paragraphs mentioning that

etection is possible using ARM’s cache structure. However, the

ethod is probabilistic, and the exact detection principle has not

een investigated and tested.

.6. Detecting virtualized environment

Thompson et al. researched to detect the virtualization envi-

onment of QEMU (Bellard, 2005), VMware (Vmware, 2020),

nd KVM (Kvm, 2020) using counter-based timing

ethod (Garfinkel et al., 2007a), which uses features that have

aster execution speed of specific instructions (Thompson et al.,

010). Peter Ferrie surveys attacks using differences in behavior for

nstruction execution on various virtual machines (Ferrie, 2007).

his research analyzes known attacks on VMware (Vmware, 2020)

nd Virtual PC (Virtualpc, 2020) and describes new attacks and

efenses against Bochs (Bochs: The open source ia-32 emulation

roject, 2020), QEMU (Bellard, 2005), and VirtualBox (Oracle vm

irtualbox, 2020). Garfinkel et al. reveals the virtual machine

nvironment using logical, resource, and timing discrepancies and

rgues that building a transparent VMM is essentially impossi-

le (Garfinkel et al., 2007b). Pék et al. (2011) demonstrates a

echnique for detecting hardware-assisted virtual platforms based

n CPU-specific design defects. Brengel et al. (2016) proposes a

echnique to detect hardware-virtualized systems using low-level

iming-based mechanisms. However, techniques based on discrep-

ncies caused by the heuristic feature suggested above are less

ccurate or can be bypassed by developer updates.
4
. Design

In this section, we first explain the objective of EmuID and the

eployment scenarios where it can play crucial role in Section 4.1 .

hen, we provide a multifaceted view of EmuID mechanism; We

xplain the key properties of our detection method in Section 4.2 ,

resent a C-like pseudocode of the implementation (Fig. 2), and

n in-depth phase-by-phase illustration of EmuID ’s execution in

ection 4.4 . The phase-by-phase analysis illustrates how the con-

ents in memory, cache, and code translation cache, in both na-

ive and emulated execution in the different stages, would appear

uring the execution of our detection code. Based on the in-depth

nalysis given in this section, we explain mitigating the attack is

on-trivial in current DBI engines in Section 6 .

.1. EmuID objectives and deployment scenarios

Objectives. Our emulation detection method, called EmuID ,
eeks to provide a reliable and universal way to detect emula-

ion on ARM against all well-known emulation engines that are in

idespread use. Retrofitting the existing software emulation en-

ines to nullify EmuID would be a non-trivial challenge, unlike

ome of the existing detections that rely on heuristics. EmuID code

akes advantage of the microarchitectural characteristic of the ARM

rchitecture. More specifically, EmuID detection code is meticu-

Y. Choi, Y. Jeong, D. Jang et al. Computers & Security 113 (2022) 102569

l

a

r

e

h

i

m

t

A

o

d

d

b

a

4

n

l

E

o

g

c

n

s

p

a

i

m

f

p

t

E
m

c

p

D
v

d

K

0
v

c

e

o

e

c

a

d

v

p

e

I

c

o

l

t

n

A

Fig. 3. EmuID Code Structure. The code is deliberately configured to have the

Launcher (L) and Detector (D) that are located in different basic blocks but are

loaded into the same cache line. This particular structure triggers different cache

behaviors in native and emulated execution environments.

s

L
t

b

t

t

f

P

P

P

4

c

I

e

l

t

m

e

o

i

c

c

l

E
m

i

i

w

t

c

i

o

a

c

c

c

m

D

fi

a

e

ously crafted to yield contrasting cache behaviors in the native

nd the emulated execution environment. Mitigating EmuID would

equire iterations of non-trivial design challenges in the software

mulation engines. Even then, the additional performance over-

ead and the required amount of effort would render the bypass-

ng of the detection rather difficult.

Deployment Scenarios. Emulation detection is pivotal in imple-

enting anti-emulation features in protected software. Many pro-

ected software is packed or obfuscated to prevent static analysis.

nti-emulation actively resists dynamic analysis techniques based

n software emulation by abruptly terminating the program upon

etecting the presence of emulation. Hence, a reliable emulation

etection technique like EmuID is a double-edged sword; it can

e used to protect intellectual properties or hinder timely malware

nalysis.

.2. EmuID code and properties

We implemented EmuID as a self-modifying code that termi-

ates immediately upon detecting that it is being run in an emu-

ated environment. The pseudocode that illustrates the behavior of

muID is shown in Fig. 2 .

The EmuID proof-of-concept is a minimal example that proves

ur detection method. However, it can be incorporated into a pro-

ram in a stealthy manner using various techniques. This is espe-

ially true when software that employs emulation detection tech-

iques is often highly obfuscated malware or protected commercial

oftware. The logic of the detection code can be hidden in a benign

iece of code or mutilated and obfuscated in many arbitrary ways.

Also, in many use cases of software emulation such as malware

nalysis, emulation engines have no option but to allow behav-

or that violates the W ̂ X policy. This is because many obfuscated

alware and similarly protected software use self-modifying code

rom hiding their behavior until runtime. For this reason, we ex-

ect that the EmuID code can easily blend in with the analyzed

arget software.

EmuID code. During the bootstrapping process, an RWX
muID code is loaded into a memory page such that the code can

odify itself (Line 37 in Fig. 2). EmuID code is composed of two

omponents: the launcher (L) and the detector (D). L and D are

ositioned consecutively; D will be executed in order as L finishes.

 is initially an array initialized with 0xc1035fd6 (Line 25). The

alue is a ret instruction. The launcher modifies or unpacks the

etector by performing xor operations on D with a 32-bit integer

EY (Line 12). After the modification (D → D's), the initial value

xc0035fd6 will be unpacked into 0xd65f03c1 which is not a

alid ARM instruction. The detector part of the code is designed to

ause program termination in emulated execution environments.

In native execution environments, 0xc1035fd6 (ret) will be

xecuted, and the detector will return without an error. On the

ther hand, an invalid instruction fault will be raised in emulated

nvironments as a result of executing 0xd65f03c1 . The detection

ode can be embedded into programs to detect and possibly deter

utomated emulated-based analysis. However, the content of the

etection code itself does not create contrasting behavior in native

s. emulated.

EmuID code properties. EmuID detection method has unique

roperties that play a crucial role in making the code yield differ-

nt results in native vs. emulated. First, we intentionally omit the

-cache invalidation procedure that is usually accompanied after

ode modification (Line 17). The ARM architecture leaves the task

f synchronizing the I-cache and D-cache entries of the same cache

ine to software, as we explained briefly in Section 2.2 . Fig. 3 illus-

rates the structure. Second, the length of L and D combined does

ot exceed the cache line size (64 bytes in the case of AARCH64).
lso, L is aligned to a cache line such that L and D belong in the
5
ame cache line. This causes D to be loaded into i-cache along with

 executes. Lastly, another important characteristics of the struc-

ure is that L and D are two different basic blocks, separated by a

ranch instruction (e.g., Line 15 in Fig. 2). The significance of these

hree characteristics will be further explained in this section. In all,

he special properties of EmuID code can be summarized as the

ollowing:

1 I-cache invalidation is intentionally omitted after code update

2 Launcher and Detector are placed in the same cache line

3 Launcher and Detector are two different basic blocks separated

by a branch instruction

.3. EmuID detection mechanism

Instruction fetching in native vs. emulated. In a native exe-

ution environment, code is fetched from memory into processor

-cache with a cache line granularity. The processor then start ex-

cuting the code from the I-cache. On the other hand, in the emu-

ated environment, the software emulation adds another layer to

his process. Emulation engines fetch all code before execution,

akes a translated copy in the translation code cache, and ex-

cutes the translated version. The emulation engine fetches the

riginal code with basic block granularity. The particular behav-

or of the emulation engine may cause basic blocks in the same

ache line to be separated as they are copied in the translation

ode cache, and EmuID takes advantage of the behavior for emu-

ation detection.

I-cache/D-cache incoherency in ARM. Fig. 4 demonstrates how

muID code work. When L is executed for the first time, a cache

iss occurs and the cache line that L and D belongs is loaded

nto the I-cache (P2). L modifies D as it executes, and this mod-

fication is most likely reflected on the copy of D in the D-cache

hich is fetched from memory during the bootstrapping. This is

he moment where an incoherency between the I-cache and D-

ache occurs; Actually, only D in D-cache is modified to D’, and D
n I-cache is not modified. Hence the D remains in the I-cache. In

ther words, I-cache and D-cache have different codes at the same

ddress. To resolve this incoherency, most common self-modifying

odes flush the cache to reflect the modified contents to the I-

ache after modification. However, we designed not to flush the

ache after the D is modified to D’ in order to leave D in I-cache.

After L execution is completed, D’ is executed. A copy of un-

odified D has been fetched as instruction into the I-cache, and

-cache contains D's , which was first loaded as data and modi-

ed by L . Since D is already located at the address of D’ of I-cache,

 cache hit occurs when CPU accesses D’. Therefore, D in I-cache is

xecuted instead of D’. Due to the lack of hardware-level I-cache D-

Y. Choi, Y. Jeong, D. Jang et al. Computers & Security 113 (2022) 102569

Fig. 4. EmuID overview. In the native environment, 1 © L modifieds D to D’. As

a result, D’ should be executed, but D is executed due to cache incoherency. In

the emulation environment, 2 © L is translated to L T in translation code cache by

emulation engine. 3 © L T modifies D to D’. 4 © D’ is translated to D T in translation

code cache by emulation engine. As a result, D't is executed as expected.

c

t

I

e

D
t

i

e

c

v

t

l

w

p

c

W

c

i

t

o

o

a

e

n

D

l

f

t

L

t

m

c

l

e

t

t

i

t

g

c

4

c

e

v

8

p

b

s

a

c

s

t

v

e

E

t

b

t

t

b

E
e

w

a

t

p

a

e

e

a

c

b

s

i

b

n

i

f

f

L

n

o

c

T

w

r

D

s

d

ache syncing on the ARM architecture and property P1 of EmuID ,
he processor executes D in the I-cache as a result of a cache hit.

n this way, we induced D consisting of ret instructions to be ex-

cuted unexpectedly instead of D’ in the native environment. Since

 is composed of a series of ret instructions, EmuID code essen-

ially does nothing but simply returns the control-flow to the orig-

nal caller.

Code execution and data access in emulated execution. The

mulation engine intervenes with all code fetches, but not data ac-

esses; The instructions that access data may be instrumented for

arious purposes, the access to data is not obstructed and reaches

he in-memory original copy. This creates complexities when emu-

ating an self-modifying code. The emulation engine must be on

atch (e.g., by catching all memory modifications to the RWX

ages) for modifications to code pages so that it can invalidate its

ode caches when the original copies of the cache are modified.

e explain how this characteristic of emulation engines further

omplicates EmuID mitigation in Section 6 .

EmuID execution in emulation environment. The process of

nstruction fetching in the emulation environment is different from

hat in the native environment. In the emulation environment, the

riginal binary is not directly fetched into I-cache. The code block

f the binary is dynamically translated with basic block granularity

nd fetched into the translation code cache.

After one basic block is translated and executed, the emulation

nvironment checks the position of the next code block, and the

ext basic block is processed sequentially.

In our detection method, we intentionally place the L and the

 in the different basic block. In order to execute the L , the emu-

ation engine first translates the basic block of the L to the L T and

etches it to the translation code cache. After that, the L T in the

ranslation code cache is fetched into the I-cache for execution. The

 T fetched in I-cache is executed by CPU. The L T modifies the D to
he D’. The L T modifies the code of the original binary when the

odification occurs without modifying the translation code cache.

After the execution of L T is finished, the emulation engine

hecks whether the next basic block to be executed is in the trans-

ation code cache. Since the D’, which is the next basic block to be

xecuted, has never been fetched into the translation code cache,

he emulation engine translates the D’ to D't and fetches it to

he translation code cache. The D't in the translation code cache

s fetched into I-cache for execution and then executed by CPU. In

his way, we induced D't consisting of undefined instructions that

enerate an error to be executed in the emulation environment, in

ontrast to the native environment that executes the D .
6
.4. In-Depth analysis of EmuID execution in native vs emulated

In this section, we describe the overall detection flow and the

hanges in memory and cache contents per step. The location of

ach phase is indicated in Fig. 2 .

I Launcher (L) and Detector (D) has been loaded into memory

II Launcher L is about to be executed. I-cache is loaded with the

cache line that contains L
III Launcher L has finished executing

IV Detector D , which has been modified by L (D → D's), is about

to be executed.

The execution flow of the detection algorithm in the native en-

ironment and the emulation environment is depicted in Figs. 5–

 . Figures consist of split cache in CPU and memory in which the

rogram running EmuID is loaded. Also, the program has L basic

lock and D basic block. The emulation execution in these figures

hows the operation in both ARM and x86 architectures. Both ARM

nd x86 architectures mostly have L1 cache composed of split I-

ache and D-cache, and the emulation engine translates with ba-

ic block granularity in both architectures. ARM and x86 architec-

ures differ when it comes to cache coherency policies (manual

s. automatic). However, in the emulation environment, there is no

xecution that requires cache coherency, so the execution flow of

muID in both architectures is similar.

Phase 1: Initial state. Fig. 5 shows the initial state in the na-

ive environment and the emulation environment. EmuID code has

een loaded into memory and ready to be executed. The L and

he D have been copied into the executable page allocated through

he mmap() function. As a result of the copying, L and D have

een fetched into the D-Cache. Up to this phase, the contents of

muID code in memory and caches are the same in native and

mulation execution.

Phase 2: L is about to execute. Fig. 6 captures the moment

hen L is about to execute on the processor. In native execution,

n instruction fetch on L has occurred and the cache line that con-

ains L has been placed in the I-cache. Because of P2, L and D are

ositioned in the same cache line, and D is loaded into the I-cache

long with L at this moment.

In emulated execution, however, L is not directly executed. The

mulation engine catches a translation code cache miss since L is

xecuting for the first time. In turn, the engine fetches the code

s data, performs necessary translations, then places it in the code

ache. It should be noted that this code fetching is done basic block

y basic block , unlike the instruction fetch performed by proces-

ors, which has a granularity of cache lines.

As a result, L T (counterpart of L in the translation code cache)

s fetched by the processor to be executed. Additionally, a subtle,

ut rather significant difference occurs here. Unlike the case of the

ative execution, D is not loaded in the I-cache along with L . This

s because L and D are two different basic blocks (P3). These dif-

erences affect the consequent executions to cause completely dif-

erent results in the native execution and emulated execution.

Phase 3: L has finished executing.

Fig. 7 shows when the L has finished executing. As shown in

ine 12 in Fig. 2 , L modifies D and the now modified D is de-

oted as D’. In the native execution, writes to D may be reflected

n the corresponding cache line in the D-cache. This is where in-

oherency between the entries for D in I-cache and D-cache arise.

he D-cache has received the modification, but not the I-cache. As

e discussed in Section 2.2 , this discrepancy is not automatically

econciled by the ARM microarchitecture. Therefore, a stale copy of

 is left behind in the I-cache.

In the emulation environment, the L T has been executed. Con-

equently, the D has been modified to D’. In emulated execution,

ata read and writes behavior is not altered unless given a specific

Y. Choi, Y. Jeong, D. Jang et al. Computers & Security 113 (2022) 102569

Fig. 5. Phase 1. Initial State. L and D are loaded into RWX memory. To this end, L and D are first loaded in D-cache and then updated in memory.

Fig. 6. Phase 2. Launcher is ready to be executed. In A, L is loaded into I-Cache. Since L and D are in the same cache line, D is loaded along with L as a side effect. In B, L
is fetched, translated to become L T , which is then placed in the code cache. L T is loaded into I-cache (Notice that D is not loaded into I-cache).

Fig. 7. Phase 3. Launcher has finished executing. The D is modified to the D’. In A, since there has been no explicit I-cache invalidation, D in I-cache is stale from this point

on.

t

n

f

t

fi

w

i

e

m

t

c

t

e

t

c

s

i

t

n

a

a

(

o
ranslation rule. Hence, the modifications to D performed by L are

ot different from those of the native execution. However, the dif-

erence from the native execution that must be pointed out here is

hat D has not been loaded into the I-cache. Therefore, when D is
nally executed by the processor, it will cause an I-cache miss, as

e will explain in the next phase.

Phase 4: D’ is about to execute.

In this phase, the EmuID code manifests its contrasting behav-

ors in native vs. emulated execution environments. In native ex-

cution, a cache hit occurs on a copy of D in the I-cache; the

emory writes to D has only been reflected on the copies in

he D-cache or memory, but a I-cache hit occurs on the stale

opy in the I-cache as intended with P1. The final result of
7
he EmuID code execution in native execution is essentially an

mpty function; D , rather than D’, executes and a ret instruc-

ion in D immediately hands over the control-flow back to the

aller.

Meanwhile, in the emulated execution, D't is executed. P3 has

eparated L and D such that only L has been fetched through the

nstruction fetch sequence of the emulation engine to leave L T in

ranslation code cache and the I-cache. D , on the contrary, has

ever been fetched as an instruction. Hence when D is executed

s L terminates, it is fetched for the first time to be first translated

nd executed. This means that the emulation engine will read D’

which has been already modified), from either D-cache or mem-

ry to create D't . D't is executed as the final result, and the un-

Y. Choi, Y. Jeong, D. Jang et al. Computers & Security 113 (2022) 102569

Fig. 8. Phase 4. D’ is ready to be executed. In A, the processor tries to execute D’, finds its address in I-cache (cache hit). Not knowing that D in I-cache is stale, the processor

executes it. In B, the emulation engine has never executed D , and it is not found in the translation code cache (TCC miss). The code cache for D must be created. Thus, the

resulting code cache in the translation code cache would be D't . And then, D't is executed on the processor.

d

m

5

a

l

o

d

o

t

l

b

E
s

t

5

a

t

f

s

t

r

A

b

b

i

E
i

t

D

r

i

l

o

i

Fig. 9. Self-Modifying code of EmuID for the 64-bit ARM and x86 architecture. The

code before line 20 is the L that sets the register and dynamically modifies the D
to the D’. From line 27 is the detector (D). The branch instruction in line 20 was

used to make the L and the D belong to different basic blocks. The value of the key

for XOR is set in line 9 and the loop counter for XOR is set in line 10. The position

of the D is also set in lines 11–12. Lines 13–19 contain the contents of the loop to

XOR with the ret instruction and the key.

s

l

p

i

e

t

e

h

c

e

t

efined instruction in D’, which essentially works as a trap , ter-

inates the execution.

. Implementation and evaluation

We conducted a thorough evaluation to prove the effectiveness

nd accuracy of EmuID . First, we tested EmuID against three emu-

ation engines on four different ARM-based devices. The detection

f a cross-architect emulation engine on two different x86-based

evices was also tested.

This experiment is intended to show that the detection method

f EmuID is generalizable to different emulation engine implemen-

ations It also indicates that the EmuID is applicable to ARM emu-

ation engine running on other architecture.

The experiment should also test the occurrence of possi-

le false-negatives by EmuID detection. Second, we also ran the

muID detection test on 159 types of ARM-based devices to mea-

ure any occurrences of false-positives . Additionally, we measured

he time consumed for each detection.

.1. EmuID implementation

Fig. 9 is EmuID code written for the 64-bit ARM and x86

rchitecture we used for the evaluation, whose operation is de-

ailed in Section 4 . The EmuID code is implemented separately

or both 32-bit and 64-bit architecture due to ISA and cache line

ize differences. However, the effectiveness and accuracy of the

wo implementations are identical, as assured by our experiment

esults. The 32-bit implementation of EmuID can be found in

ppendix A . EmuID has a small footprint so that it can be em-

edded in other programs to detect emulation. A developer can

ootstrap EmuID by copying it into an RWX page and executing

t, as shown in section Section 4.2 . As a final execution result,

muID simply returns to its original caller in native execution, but

t will cause an illegal instruction fault in emulated execution.

From line 7 to line 20 is the launcher (L), and from line 27 is

he detector (D). In L , The register x0 is used as a position of the

 . The register x1 (w1) is used as a temp register for xor . The

egister x2 (w2) is used as a key using for xor . The register x3
s used as a loop counter. The value of the key for xor is set 1 in

ine 9, and the loop counter for xor is set in line 10. The position

f the D is set in lines 11–12.

After the register values are set, the L modifies the D , which

s initially a series of ret instructions. The modified D’ is now a
8
eries of (0xd65f03c1). Lines 13–19 contain the contents of the

oop for xor . In this loop, the ret instructions of D will be un-

acked through xor operation with the key. Each ret instruction

s modified to the undefined instruction (0xd65f03c1) repeat-

dly. When L finishes executing, now D’ will start executing. In

he case of native execution, a stale copy of D in i-cache will ex-

cute, and the EmuID code will return immediately. On the other

and, in emulation execution, D’ (or more precisely D't) will exe-

ute and get an illegal instruction fault.

In short, we implemented the detection code that causes differ-

nt execution results in the ARM native environment and emula-

ion environment with just one self-modifying code. This code is

Y. Choi, Y. Jeong, D. Jang et al. Computers & Security 113 (2022) 102569

Table 1

False-negative test results from 10 0 0 trials of EmuID detection on emulation engines.

Emulation Engine Device Processor Arch Core Name Cache Line OS False-negative Rate

DynamoRIO RPI 2 Model B v1.1 armeabi-v7a Cortex-A7 32 Bytes Ubuntu MATE 18.04.2 0%

DynamoRIO RPI 3 Model B v1.2 arm64-v8a Cortex-A53 64 Bytes Ubuntu MATE 18.04.2 0%

DynamoRIO Hikey 960 arm64-v8a Cortex A73, Cortex A53 64 Bytes Leuuntu 16.04 0%

DynamoRIO Juno r0 arm64-v8a Cortex-A57, Cortex-A53 64 Bytes Openembedded 0%

Valgrind RPI 2 Model B v1.1 armeabi-v7a Cortex-A7 32 Bytes Ubuntu MATE 18.04.2 0%

Valgrind RPI 3 Model B v1.2 arm64-v8a Cortex-A53 64 Bytes Ubuntu MATE 18.04.2 0%

Valgrind Hikey 960 arm64-v8a Cortex A73, Cortex A53 64 Bytes Lubuntu 16.04 0%

Valgrind Juno r0 arm64-v8a Cortex-A57, Cortex-A53 64 Bytes Openembedded 0%

QEMU-user RPI 2 Model B v1.1 armeabi-v7a Cortex-A7 32 Bytes Ubuntu MATE 18.04.2 0%

QEMU-user RPI 3 Model B v1.2 arm64-v8a Cortex-A53 64 Bytes Ubuntu MATE 18.04.2 0%

QEMU-user Hikey 960 arm64-v8a Cortex A73, Cortex A53 64 Bytes Lebuntu 16.04 0%

QEMU-user Juno r0 arm64-v8a Cortex-A57, Cortex-A53 64 Bytes Openembedded 0%

QEMU-system-arm RPI 2 Model B v1.1 armeabi-v7a Cortex-A7 32 Bytes Ubuntu MATE 18.04.2 0%

QEMU-system-arm RPI 3 Model B v1.2 arm64-v8a Cortex-A53 64 Bytes Ubuntu MATE 18.04.2 0%

QEMU-system-arm Hikey 960 arm64-v8a Cortex A73, Cortex A53 64 Bytes Lebuntu 16.04 0%

QEMU-system-arm Juno r0 arm64-v8a Cortex-A57, Cortex-A53 64 Bytes Openembedded 0%

QEMU-user Intel Desktop Intel Coffee Lake Core i9-9900K 64 Bytes Ubuntu 18.04.5 0%

QEMU-user AMD Desktop AMD Zen 2 Ryzen Threadripper 3990X 64 Bytes Ubuntu 20.04.2 0%

QEMU-system-arm Intel Desktop Intel Coffee Lake Core i9-9900K 64 Bytes Ubuntu 18.04.5 0%

QEMU-system-arm AMD Desktop AMD Zen 2 Ryzen Threadripper 3990X 64 Bytes Ubuntu 20.04.2 0%

i

a

s

t

t

s

e

w

i

5

E
w

(

w

c

d

a

s

g

E
x

F

l

p

q

p

t

T

m

t

a

E
a

c

A

w

t

f

b

u

v

o

u

o

b

t

a

t

5

h

o

v

W

I

v

t

f

m

t

p

o

t

d

1

s

u

E
d

i

i

6

t

c

m

a

o

ntended to serve as a proof-of-concept. Fig. 9 was executed in the

pplication as a shellcode. Fig. 9 is applicable when the cache line

ize is 64 bytes, but in the case of 32 bytes, the shellcode is larger

han the cache line size and is not loaded in one cache line. For

his case, if the cache line size is 32 bytes, the thumb mode as-

embly code of self-modifying code, which performs a similar op-

ration as the code in Fig. 9 , is executed. In the end, our technique

as applicable to both 32 bytes and 64 bytes without being lim-

ted by cache line size.

.2. Evaluation of emulation detection accuracy

We evaluated the generalizability and accuracy of the

muID detection method in terms of false-negatives on three

idely used emulation engines (DynamoRio, Valgrind, and QEMU

QEMU-user and QEMU-system-arm)) on four ARM-based devices

ith varying architectures. Especially for QEMU, which provides

ross-architecture emulation, we additionally tested it on two

ifferent x86-based devices.

Table 1 illustrates the result of the experiment. We ran 10 0 0 tri-

ls for each emulation engine and device combinations. As our re-

ults illustrate, EmuID was able to detect all tested emulation en-

ines across four devices without any false-negatives. In addition,

muID was able to detect emulation engines for ARM running in

86 architectures without false-negative.

This experiment proves four aspects of EmuID effectiveness.

irst, EmuID is 100% accurate in emulation detection. If an emu-

ation detection scheme has non-zero false-negative, one can sim-

ly run emulation indefinitely until it fails. Hence, this is a re-

uired virtue for all emulation detection schemes, and EmuID is

roved to satisfy the requirement. However, a 100% accurate de-

ection rate does not necessarily mean that the scheme is robust.

hat is, if a quick fix to the emulation engine can nullify the

echanism by which the detection scheme detects the emulation,

he scheme is not robust. We discuss why mitigating EmuID is

 daunting challenge for emulation engines in Section 6 . Second,

muID is implementation-agnostic. EmuID successfully detected

ll three emulation engines we used in the experiment. This is be-

ause EmuID exploits the discrepancy between the caveat of the

RM microarchitecture and the underlying shared principle in soft-

are emulation implementations. Third, EmuID successfully de-

ects emulations on both 32-bit and 64-bit devices. There are dif-

erences between 32-bit and 64-bit, such as the cache line size (32

ytes vs. 64 bytes) and the instruction set architecture (the em-
9
lation engines are compiled to 64-bit executables for 64-bit de-

ices). However, such factors did not affect the detection accuracy

f EmuID . Fourth, EmuID is able to detect a cross-architecture em-

lation engine. Since I-cache and D-cache incoherency is a feature

f the ARM native environment, this does not occur if the ARM

inary is emulated for execution on a non-ARM-based architec-

ure (e.g., x86 architecture). That is, EmuID can detect the cross-

rchitecture emulation engine by checking that it does not run in

he ARM native environment.

.3. Evaluation on real mobile devices

We conducted another experiment to prove that EmuID also

as no false-negatives by running it on ARM-based devices with-

ut emulation. In order to test EmuID on a wide variety of de-

ices, we opted for the Amazon Device Farm service (AWS, 2020).

e embedded EmuID code into an app through the Java Native

nterface (JNI) and ran it on a total of 155 devices (all available de-

ice types in Amazon Device Farm) in addition to the four devices

hat we physically own. The reason why we ran such a thorough

alse-negative test is that there exist many ARM processor imple-

entations. Also, a non-negligible portion of the processor archi-

ecture can be modified by the manufacturer due to the licensing

ractice of the ARM architecture. Fig. 10 a shows the distributions

f the manufacturer of the Android devices, while Fig. 10 b shows

he distributions of the installed operating systems on the Android

evices.

Table 2 shows our experiment results. Each device is tested

0 0 0 times with EmuID , and we did not find any false-positive re-

ults. Combined with our results from the experiment against em-

lation engines, this experiment again shows the accuracy of the

muID detection method. Fig. 11 shows the time consumption for

etecting the execution environment. The average time to detect

s 0.14 ms. This shows that our method can be readily embedded

nto the software with almost no performance impact.

. On the difficulty of mitigating EmuID

The emulation environment detection technique presented in

his paper uses the hardware feature with differences that oc-

ur in the native environment but not in the emulation environ-

ent. The hardware feature is the incoherency between i-cache

nd d-cache. Our technique identifying the execution environment

f the running application intentionally causes cache incoherency.

Y. Choi, Y. Jeong, D. Jang et al. Computers & Security 113 (2022) 102569

Table 2

False-positive test results from 10 0 0 trials of detection on real devices.

Vendor Device Model ARM Arch OS False-positive

v7 v8 Rate

Raspberry Pi Foundation RPI 2 Model B v1.1 BCM2836 ✔ Ubuntu MATE 18.04.2 0%

RPI 3 Model B v1.2 BCM2837 ✔ 0%

Linaro Hikey 960 Kirin 960 ✔ Lebuntu 16.04 0%

Arm Juno r0 Juno r0 ✔ Openembedded 0%

Samsung Galaxy Note 9 SM-N960U1 ✔ Android 8.1.0 0%

Galaxy S9 (Unlocked) SM-G960U1 ✔ Android 8.0.0 0%

Galaxy S9 + (Unlocked) SM-G965U1 ✔ 0%

Galaxy Tab S3 9.7” SM-T820 ✔ 0%

Galaxy Note8 (Unlocked) SM-N950U1 ✔ Android 7.1.1 0%

Galaxy Note5 (AT&T) SM-N9120A ✔ Android 7 0%

Galaxy S6 (T-Mobile) SM-G920T ✔ 0%

Galaxy S6 Edge SM-G925F ✔ 0%

Galaxy S8 (T-Mobile) SM-G950U ✔ 0%

Galaxy S8 Unlocked SM-G950U1 ✔ 0%

Galaxy S8 + (T-Mobile) SM-G955U ✔ 0%

Galaxy Note5 SM-N920C SM-N920C ✔ Android 6.0.1 0%

Galaxy S5 (AT&T) SM-G900A ✔ 0%

Galaxy S5 (Verizon) SM-G900V ✔ 0%

Galaxy S6 (T-Mobile) SM-G920T ✔ 0%

Galaxy S6 (Verizon) SM-G920V ✔ 0%

Galaxy S6 Edge SM-G925F SM-G925F ✔ 0%

Galaxy S6 SM-G920F SM-G920F ✔ 0%

Galaxy S7 (AT&T) SM-G930A ✔ 0%

Galaxy S7 Edge (AT&T) SM-G935A ✔ 0%

Galaxy S7 Edge SM-G935F SM-G935F ✔ 0%

Galaxy S7 SM-G930F SM-G930F ✔ 0%

Galaxy Tab S2 9.7 SM-T813 ✔ 0%

Galaxy Tab S2 8.0” (WiFi) SM-T713 ✔ 0%

Galaxy E5 SM-E500H ✔ Android 5.1.1 0%

Galaxy Grand Prime 4G SM-G531F ✔ 0%

Galaxy J5 4G SM-J500F ✔ 0%

Galaxy Note5 (AT&T) SM-N9120A ✔ 0%

Galaxy Note5 (T-Mobile) SM-N920T ✔ 0%

Galaxy S6 Edge + (AT&T) SM-G928A ✔ 0%

Galaxy S6 Edge +

(T-Mobile)

SM-G928T ✔ 0%

Galaxy Tab S2 8.0” (WiFi) SM-T710 ✔ 0%

Galaxy A5 SM-A500F ✔ Android 5.0.2 0%

Galaxy S6 (Verizon) SM-G920V ✔ 0%

Galaxy S6 Edge SM-G925F ✔ 0%

Galaxy S6 Edge (Verizon) SM-G925V ✔ 0%

Galaxy Tab 4 10.1” (WiFi) SM-T530NU ✔ 0%

Galaxy Note 4 (AT&T) SM-N910A ✔ Android 5.0.1 0%

Galaxy Note 4 (Verizon) SM-N910V ✔ 0%

Galaxy Note 4 SM-N910H SM-N910H ✔ 0%

Galaxy S4 (AT&T) SGH-I337 ✔ 0%

Galaxy S4 (Verizon) SCH-I545 ✔ 0%

Galaxy S4(Unlocked) GT-I9500 ✔ 0%

Galaxy Note 3 (Sprint) SM-N900P ✔ Android 5 0%

Galaxy Note 3 (T-Mobile) SM-N900T ✔ 0%

Galaxy E7 SM-E7000 ✔ Android 4.4.4 0%

Galaxy Grand Neo Plus GT-I9060I ✔ 0%

Galaxy Grand Prime Duos SM-G530H ✔ 0%

Galaxy J1 Ace SM-J110H ✔ 0%

Galaxy J1 Duos SM-J100H ✔ 0%

Galaxy Note 3 (AT&T) SM-N900A ✔ 0%

Galaxy Note 3 (Verizon) SM-N900V ✔ 0%

Galaxy Note 4 (AT&T) SM-N910A ✔ 0%

Galaxy Note 4 (Sprint) SM-N910P ✔ 0%

Galaxy Note 4 (T-Mobile) SM-N910T ✔ 0%

Galaxy Note 4 (Verizon) SM-N910V ✔ 0%

Galaxy S DUOS 3 SM-G316HU ✔ 0%

Galaxy S4 (AT&T) SGH-I337 ✔ 0%

Galaxy S4 (T-Mobile) SGH-M919 ✔ 0%

Galaxy S5 (AT&T) SM-G900A ✔ 0%

Galaxy S5 (Verizon) SM-G900V ✔ 0%

Galaxy Tab 3 7.0”

(T-Mobile)

SM-T217T ✔ 0%

Galaxy Grand 2 SM-G7102 ✔ Android 4.4.2 0%

Galaxy Light (MetroPCS) SGH-T399N ✔ 0%

Galaxy Note 2 (AT&T) SGH-I317 ✔ 0%

Galaxy Note 2 (Verizon) SCH-I605 ✔ 0%

(continued on next page)

10

Y. Choi, Y. Jeong, D. Jang et al. Computers & Security 113 (2022) 102569

Table 2 (continued)

Vendor Device Model ARM Arch OS False-positive

v7 v8 Rate

Galaxy Note 3 (AT&T) SM-N900A ✔ 0%

Galaxy S3 (Verizon) SCH-I535 ✔ 0%

Galaxy S4 (AT&T) SGH-I337 ✔ 0%

Galaxy S4 (US Cellular) SCH-R970 ✔ 0%

Galaxy S4 (Verizon) SCH-I545 ✔ 0%

Galaxy S4 Active (AT&T) SGH-I537 ✔ 0%

Galaxy S4 mini (Verizon) SCH-I435 ✔ 0%

Galaxy S4 Mini GT-I9195 GT-I9195 ✔ 0%

Galaxy S5 (AT&T) SM-G900A ✔ 0%

Galaxy S5 (T-Mobile) SM-G900T ✔ 0%

Galaxy S5 Active (AT&T) SM-G870A ✔ 0%

Galaxy Tab 4 10.1” (WiFi) SM-T530NU ✔ 0%

Galaxy Tab 4 7.0” (WiFi) SM-T230NU ✔ 0%

Galaxy Note 2 (AT&T) SGH-I317 ✔ Android 4.3 0%

Galaxy S3 (AT&T) SGH-I747 ✔ 0%

Galaxy S3 (T-Mobile) SGH-T999 ✔ 0%

Galaxy S3 (Verizon) SCH-I535 ✔ 0%

Galaxy S3 LTE (T-Mobile) SGH-T999L ✔ 0%

Nexus 10 (WiFi) GT-P8110 ✔ 0%

Galaxy Tab 3 Lite 7.0”

(WiFi)

SM-T110 ✔ Android 4.2.2 0%

LG G7 ThinQ LM-G710 ✔ Android 8.0.0 0%

LG V20 (AT&T) LG-H910 ✔ Android 7 0%

V20 (T-Mobile) LG-H918 ✔ 0%

V20 (Verizon) VS995 ✔ 0%

G5 (T-Mobile) LG-H830 ✔ Android 6.0.1 0%

Nexus 5 D820 ✔ Android 6 0%

G3 (AT&T) D850 ✔ Android 5.0.1 0%

Nexus 5 D820 ✔ 0%

Nexus 4 E960 ✔ Android 4.4.3 0%

G Pad 7.0 (AT&T) V410 ✔ Android 4.4.2 0%

G2 (AT&T) D800 ✔ 0%

G2 (T-Mobile) D801 ✔ 0%

G3 (AT&T) D850 ✔ 0%

G3 (T-Mobile) D851 ✔ 0%

G3 (Verizon) VS985 ✔ 0%

Nexus 5 D820 ✔ 0%

Optimus L70 (MetroPCS) MS323 ✔ 0%

G Flex (AT&T) D950 ✔ 0%

Motorola Moto G 4 Moto G (4) ✔ Android 7 0%

Nexus 6 XT1103 ✔ 0%

Moto G - 2nd Gen XT1064 ✔ Android 6 0%

Moto G - 3rd Gen MotoG3 ✔ 0%

Nexus 6 XT1103 ✔ 0%

DROID Turbo 2 (Verizon) XT1585 ✔ Android 5.1.1 0%

DROID Turbo (Verizon) XT1254 ✔ Android 5.1 0%

Moto E - 2nd Gen XT1511 ✔ 0%

Moto X - 2nd Gen

(Verizon)

XT1096 ✔ 0%

Nexus 6 XT1103 ✔ 0%

DROID Ultra (Verizon) XT1080 ✔ Android 4.4.4 0%

Moto G (AT&T) XT1045 ✔ 0%

DROID RAZR HD (Verizon) XT926 ✔ Android 4.4.2 0%

DROID RAZR M (Verizon) XT907 ✔ 0%

HTC U11 HTC U11 ✔ Android 7.1.1 0%

One A9 (Unlocked) HTCOne A9 ✔ Android 6.0.1 0%

One M9 (AT&T) 6735A ✔ Android 5.0.2 0%

One M9 (Verizon) HTC6535LVW ✔ 0%

One M8 (AT&T) 6268A ✔ Android 4.4.4 0%

One M8 (Verizon) HTC6525LVW ✔ 0%

One M7 (AT&T) 6096A ✔ Android 4.4.2 0%

One M8 (AT&T) 6268A ✔ 0%

One M8 (Verizon) HTC6525LVW ✔ 0%

Google Pixel 2 Google Pixel

2

✔ Android 9 0%

Pixel 2 XL Google Pixel

2 XL

✔ 0%

Pixel 2 Google Pixel

2

✔ Android 8.1.0 0%

Pixel Pixel ✔ Android 8.0.0 0%

Pixel XL Pixel XL ✔ 0%

(continued on next page)

11

Y. Choi, Y. Jeong, D. Jang et al. Computers & Security 113 (2022) 102569

Table 2 (continued)

Vendor Device Model ARM Arch OS False-positive

v7 v8 Rate

Pixel 2 Google Pixel

2

✔ 0%

Pixel 2 XL Google Pixel

2 XL

✔ 0%

Pixel Pixel ✔ Android 7.1.2 0%

Pixel XL Pixel XL ✔ 0%

ASUS Nexus 7 - 2nd Gen (WiFi) ME571K ✔ Android 6 0%

Nexus 7 - 2nd Gen (WiFi) ME571K ✔ Android 5.0.1 0%

Nexus 7 - 2nd Gen (WiFi) ME571K ✔ Android 4.4.4 0%

Nexus 7 - 2nd Gen (WiFi) ME571K ✔ Android 4.4.2 0%

Nexus 7 - 2nd Gen (WiFi) ME571K ✔ Android 4.3.1 0%

Nexus 7 - 1st Gen (WiFi) ME370T ✔ Android 4.2.1 0%

Nexus 7 - 1st Gen (WiFi) ME370T ✔ Android 4.2 0%

Amazon Fire HD 7 (2014) SQ46CW ✔ Android 4.4.3 0%

Kindle Fire HDX 7 (2013) C9R6QM ✔ 0%

Fire Phone SD4930UR ✔ Android 4.2.2 0%

Huawei M8 HUAWEI

NXT-L29

✔ Android 6 0%

P9 EVA-L09 ✔ 0%

Ascend Mate 7 MT7-L09 ✔ Android 4.4.2 0%

Sony Xperia Z4 Tablet SGP712 ✔ Android 5.0.2 0%

Xperia Z3 D6616 ✔ Android 4.4.4 0%

Xperia Z1 Compact D5503 ✔ Android 4.3 0%

Intex Aqua Y2 Pro Aqua Y2 Pro ✔ Android 4.4.2 0%

Oppo Find 7a X9006 ✔ Android 4.3 0%

Wiko Rainbow 4G RAINBOW 4G ✔ Android 4.4.2 0%

Fig. 10. Manufacturer and OS version distributions of tested devices.

S

c

c

o

w

t

b

t

t

s

6

o

n

o

r

c

c

b

w

e

s

E
w

E
n

d

t

a

f

e

b

a

elf-modifying code is suitable as the code that occurs cache in-

oherency. When our detection technique utilizing self-modifying

ode works, abnormal execution results due to cache incoherency

ccur in the native environment, and normal execution occurs

ithout cache incoherency in the emulation environment. Since

hese results are based on architectural features, it is difficult to be

ypassed with simple modifications, unlike heuristic techniques. In

his section, we discsuss why it is non-trivial to amend the emula-

ion engines to mitigate EmuID through a few plausible but infea-

ible theoretic mitigation methods.

.1. Detecting and nullifying EmuID through manual analysis

In EmuID deployment scenarios, we assume that EmuID will

ften be used in conjunction with software obfuscation tech-

iques (Themida, 2021). The program code itself is encrypted or

bfuscated in arbitrary ways and only reveals its behavior during

untime. As such, EmuID will be hidden among the already obfus-
12
ated program code. In addition, our proof-concept shown in Fig. 9 ,

an be arbitrarily transformed such that it evades signatures-

ased detection mechanisms as often seen in polymorphic mal-

are. These effort s can subst antially raise the bar f or the reverse

ngineers since obfuscated programs often require dynamic analy-

is, and EmuID makes such a method rather difficult.

However, skilled reverse engineers can eventually disarm

muID code hidden in the program with sufficient effort s, as

ith any other anti-emulation features. With the knowledge of the

muID ’s mechanism, the reverse engineers can locate and elimi-

ate EmuID code from the program. Hence, EmuID cannot provide

eterministic prevention of manual analysis but rather brings addi-

ional hurdles in the analysis process. Nevertheless, EmuID lever-

ges the unique characteristics of the ARM architecture. Therefore,

undamentally mitigating EmuID through rectifying the emulation

ngines would be rather difficult unlike the existing signature-

ased emulation detection schemes (Falcón and Riva, 2012; Hron

nd Jermář, 2014; Jang et al., 2019; Jing et al., 2014; Kirsch et al.,

Y. Choi, Y. Jeong, D. Jang et al. Computers & Security 113 (2022) 102569

Fig. 11. Time consumption for detection on 155 real android devices of Amazon

Device Farm. The average time to detect is 0.14 ms. The shortest time is 0.012 ms,

and the longest time is 1.224 ms.

2

f

l

6

o

t

i

v

p

t

e

o

W

t

e

c

s

t

s

o

2

6

g

t

h

l

i

t

A

m

c

t

T

q

d

2

i

s

c

e

o

b

w

c

r

t

t

p

t

c

a

m

t

e

d

t

l

t

I

E
r

i

6

m

r

g

m

t

c

t

n

t

t

c

r

d

t

t

c

b

t

o

t

f

t

f

(

a

7

t

t

o

u

w

018; Li and Li, 2014; Petsas et al., 2014; Polino et al., 2017; Raf-

etseder et al., 2007; Sun et al., 2016). We will discuss this point

ater in this section (Sections 6.3 and 6.4).

.2. Compatibility issues with W ̂ X Policy

EmuID has a reliance on the self-modifying code and hence vi-

lates the W ̂ X policy. Also, as we assume that software obfusca-

ion methods are used in combination, violation of the W ̂ X policy

s inevitable.

When EmuID -protected program is run inside emulation en-

ironments for the purpose of analysis, the violation of the W ̂ X

olicy is usually tolerated. This is because the emulation software

hemselves require JIT compilation to translate or instrument the

mulated software, and this means that system-wide enforcement

f W ̂ X is infeasible. The emulation engines can also enforce the

 ̂ X policy during emulation. However, many obfuscated or pro-

ected software does employ self-modifying code, and the reverse

ngineer has no option but to allow such behavior.

However, running EmuID -protected program in native exe-

ution environments for benign use can bring compatibility is-

ues. Some modern systems may strictly enforce the W ̂ X policy,

hereby rendering EmuID -protected program unable to run on the

ystem. This is a limitation of EmuID as well as many software

bfuscation methods that include self-modifying code (Themida,

021; upx, 2021).

.3. Modifying code translation granularity

Altering the translation granularity of software emulation en-

ines may be considered a possible mitigation for the EmuID de-

ection method. Since EmuID takes advantage of the artifact that

appens during the code translation process that copies and trans-

ates the next basic block to be executed. However, a close look

nto the mechanism by which the translation code cache is main-

ained reveals the tentative mitigation approach’s inapplicability.

n emulation engine has to meet the following requirements to

imic the architectural characteristics that appear due to the

ache lines:

One tentative solution would be to redesign software emula-

ion engines such that it fetches code at a cache-line granularity.

his solution introduces a few non-trivial problems. First, this re-

uires heavy modifications to the emulation engines at the fun-

amental level. Emulation engines (Bellard, 2005; Bruening et al.,

003), simply assume basic block granularity in all components of

ts implementation. This is simply because the basic block by ba-

ic block translation is the most efficient and intuitive. Therefore,
13
hanging the translation granularity might mean reconsidering the

mulation design from scratch.

Second, this solution would introduce significant performance

verhead. If a single basic block spans multiple cache lines, the

asic block would have to be split into multiple code cache. This

ould increase the amount of control flow transfers among the

ode caches, hurting the cache locality. When multiple basic blocks

eside in the same cache line, the emulation engine must perform

ranslation of all the basics blocks that are not necessarily going

o be executed. Overall, this tentative solution would introduce a

erformance overhead as well as software complexity.

Third, modifying translation code cache generation and main-

enance for EmuID mitigation would also render existing code

ache optimization incompatible. For instance, basic block linking

nd trace caching must be either discarded or redesigned for the

odification. Basic block linking stitches two basic blocks together

o avoid a call to emulation dispatcher. Furthermore, frequently ex-

cuted sequences of basic blocks are chained into a trace for ad-

itional performance boost (Dynamorio system details, 2020). At-

empts to change the granularity of code fetch and translate are

ikely to conflict with these general optimizations strategies.

For the reasons we explained above, we argue that changing

he translation granularity is not realistic mitigation for EmuID .
n all, modifying the translation granularity solely to mitigate

muID might be possible. However, the amount of effort that is

equired and mounting performance problems make the approach

nfeasible.

.4. Emulating native cache behavior

A robust mitigation to EmuID and its variants would be to

odify the emulation engine or implement a set of translation

ules to maintain a virtual set of L1 caches throughout the pro-

ram emulation. First and foremost, the emulation engine must be

onitoring all changes to executable pages. To achieve this goal,

he engine must watch the page permission changes as well as the

reation of new pages that introduce RWX pages. Then, it includes

racing of all memory accesses, cache-flushing instructions, and a

ative-like cache eviction policy. This is because EmuID is crafted

o leave a stale value only in the i-cache; the only way to capture

he stale value or incoherency is to closly follow all possible cache

ontent changes to calculate the current i-cache content of the cur-

ently executing cache lines.

We found that implementing the above mitigation would be a

aunting challenge to emulation engine developers. Cache profiling

hrough emulation engines havs been developed and used in prac-

ice (Cache simulator, 2020). However, they currently only report

ache hit rates for the caches and the addresses of the cache lines,

ut not the contents of the cache lines. For detection of EmuID ,
he cache profiling tool must be modified to also track the contents

f the cache lines. More importantly, the performance overhead of

he tool rules out the cache profiling tool as possible mitigation

or EmuID . The documentation of the profiling tool explains that

he tool is too slow to profile an entire application since the per-

ormance overhead is about 500 times that of the native execution

 Cache simulator, 2020). Therefore, mitigating EmuID through an

lways maintained virtual cache is also not feasible.

. Conclusion

In this paper, we presented EmuID , which takes advantage of

he characteristics of the ARM architecture’s cache behavior to de-

ect the presence of emulation. We provided an in-depth analysis

f our detection method and how it causes the native and em-

lated execution environments to have different cache behaviors,

hich is utilized for the detection method. We showed that our

Y. Choi, Y. Jeong, D. Jang et al. Computers & Security 113 (2022) 102569

m

b

D

(

c

D

c

i

A

t

(

I

t

2

b

1

A

F

3

f

c

t

l

t

i

F

i

r
x
L
1

b
w

i

i

e

i

t

i

t

R

A
A

A

B

B

B

B

B

B

C

D
ethod is accurate and agnostic to implementations of emulators

y testing it on well-known software emulation engines such as

BI (Valgrind, DynamoRIO) for the ARM architecture and emulator

QEMU) for the ARM architecture and x86 architecture, and also

onfirmed that it has no false positives on 155 ARM-based devices.

eclaration of Competing Interest

The authors declare that they have no known competing finan-

ial interests or personal relationships that could have appeared to

nfluence the work reported in this paper.

cknowledgement

This work was supported by the National Research Founda-

ion of Korea (NRF) grant funded by the Korea government (MSIT)

No. NRF-2020R1A2C2101134 , NRF-2020R1C1C1011980) and the

nstitute for Information and communication Technology Promo-

ion (IITP) grant (No. IITP-2017-0-01889 , IITP-2020-0-00 6 6 6 , IITP-

021-0-01366 , IITP-2021-0-01587). This work was also supported

y the Office of Naval Research (ONR) through Award (N0 0 014-18-

-2661).

ppendix A. First Appendix

The EmuID code for 64-bit ARM architecture is illustrated in

ig. 9 , but shell code of this is longer then the cache line size in

2-bit ARM architecture. Thus, we implemented the EmuID code

or 32-bit ARM architecture using Thumb instruction set that is

onsists of 16-bit instructions. Fig. A.1 is EmuID code written for

he 32-bit ARM architecture.

The code from line 7 to line 21 is the launcher (L), and from

ine 31 is the detector (D). The branch instruction in line 21 makes

he L and the D be different basic blocks. The L first change the

nstruction mode from the standard ARM to Thumb (line 7–8 in
Fig. A.1. Self-Modifying code of EmuID for 32-bit ARM architecture.

D

F

F

G

G

G

H

H
J

J

J

K

K

K

L

L

M

14
ig. A.1). After then, the L sets the registers in line 12–14. The reg-

ster r0 is used as a Pointer to Code Position. The register r1 and

2 are used as the temp registers. The register r3 is used as the

or key and the loop counter. After the register values are set, the

 modifies the D , which has initially the bx lr instruction. Line

5–21 contain the contents of the loop for xor. In this loop, the

x lr instructions is of D will be unpacked through xor operation

ith the key. The bx lr instruction is modified to mov r0, sp
nstruction. When L finishes executing, now D’ will start execut-

ng. In case of native execution, a stale copy of D in i-cache will

xecute and EmuID code will return immediately with changing

nstruction mode to standard ARM. On the other hand, in emula-

ion execution, D’(or more precisely Dt's) will execute undefined

nstruction after executing mov r0, sp and get a illegal instruc-

ion fault.

eferences

arch64 port, 2020. https://github.com/DynamoRIO/dynamorio/wiki/AArch64-Port .
nton, C. , Mark, H. , Ray, H. , Chris, R. , Norman, R. , 1998. Fx! 32–a profile-directed

binary translator. IEEE Micro 18 (2), 56–64 .
ws device farm, 2020. https://aws.amazon.com/device-farm/ .

ellard, F. , 2005. QEMU, a fast and portable dynamic translator. In: USENIX Annual

Technical Conference, FREENIX Track, Vol. 41, p. 46 .
ochs: The open source ia-32 emulation project, 2020. http://bochs.sourceforge.net .

rengel, M. , Backes, M. , Rossow, C. , 2016. Detecting hardware-assisted virtualization.
In: International Conference on Detection of Intrusions and Malware, and Vul-

nerability Assessment. Springer, pp. 207–227 .
ruening, D. , Garnett, T. , Amarasinghe, S. , 2003. An infrastructure for adaptive dy-

namic optimization. In: International Symposium on Code Generation and Op-
timization, 2003. CGO 2003. IEEE, pp. 265–275 .

ruening, D. , Zhao, Q. , Amarasinghe, S. , 2012. Transparent dynamic instrumentation.

In: Proceedings of the 8th ACM SIGPLAN/SIGOPS Conference on Virtual Execu-
tion Environments, pp. 133–144 .

uck, B. , Hollingsworth, J.K. , 20 0 0. An API for runtime code patching. Int. J. High
Perform. Comput. Appl. 14 (4), 317–329 .

ache simulator, 2020. https://dynamorio.org/dynamorio _ docs/page _ drcachesim.
html .

’Elia, D.C. , Coppa, E. , Nicchi, S. , Palmaro, F. , Cavallaro, L. , 2019. SoK: using dynamic

binary instrumentation for security (and how you may get caught red handed).
In: Proceedings of the 2019 ACM Asia Conference on Computer and Communi-

cations Security, pp. 15–27 .
ynamorio system details, 2020. https://dynamorio.org/dynamorio _ docs/overview.

html .
alcón, F. , Riva, N. , 2012. Dynamic binary instrumentation frameworks: i know youre

there spying on me. In: Reverse Engineering Conference .

errie, P. , 2007. Attacks on more virtual machine emulators. Symantec Technol. Exch.
55, 369 .

arfinkel, T. , Adams, K. , Warfield, A. , Franklin, J. , 2007. Compatibility is not trans-
parency: VMM detection myths and realities. HotOS .

arfinkel, T. , Adams, K. , Warfield, A. , Franklin, J. , 2007. Compatibility is not trans-
parency: VMM detection myths and realities. HotOS .

arfinkel, T. , Rosenblum, M. , et al. , 2003. A virtual machine introspection based ar-

chitecture for intrusion detection. In: Ndss, Vol. 3. Citeseer, pp. 191–206 .
azelwood, K. , Klauser, A. , 2006. A dynamic binary instrumentation engine for the

arm architecture. In: Proceedings of the 2006 International Conference on Com-
pilers, Architecture and Synthesis for Embedded Systems, pp. 261–270 .

ron, M. , Jermář, J. , 2014. SafeMachine: Malware Needs Love, Too. Virus Bulletin .
acob, B., 2013. Caches and self modifying code. https://community.

arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/

caches- and- self- modifying- code , Accessed: 2020-09.
ang, D. , Jeong, Y. , Lee, S. , Park, M. , Kwak, K. , Kim, D. , Kang, B.B. , 2019. Rethinking

anti-emulation techniques for large-scale software deployment. Comput. Secur.
83, 182–200 .

ing, Y. , Zhao, Z. , Ahn, G.-J. , Hu, H. , 2014. Morpheus: automatically generating heuris-
tics to detect android emulators. In: Proceedings of the 30th Annual Computer

Security Applications Conference, pp. 216–225 .

arl Trygve Kalleberg, O.A.V.R. , 2016. Testing Interoperability with Closed-Source
Software Through Scriptable Diplomacy. FOSDEM .

irsch, J. , Zhechev, Z. , Bierbaumer, B. , Kittel, T. , 2018. Pwin–pwning intel pin: why
DBI is unsuitable for security applications. In: European Symposium on Re-

search in Computer Security. Springer, pp. 363–382 .
vm, 2020. http://linux-kvm.org/ .

i, X. , Li, K. , 2014. Defeating the Transparency Features of Dynamic Binary Instru-
mentation. BlackHat US .

uk, C.-K. , Cohn, R. , Muth, R. , Patil, H. , Klauser, A. , Lowney, G. , Wallace, S. , Reddi, V.J. ,

Hazelwood, K. , 2005. Pin: building customized program analysis tools with dy-
namic instrumentation. ACM SIGPLAN Not. 40 (6), 190–200 .

ulliner, C. , Oberheide, J. , Robertson, W. , Kirda, E. , 2013. PatchDroid: scalable third–
party security patches for android devices. In: Proceedings of the 29th Annual

Computer Security Applications Conference, pp. 259–268 .

https://doi.org/10.13039/501100003725
https://doi.org/10.13039/501100010418
https://doi.org/10.13039/100000006
https://github.com/DynamoRIO/dynamorio/wiki/AArch64-Port
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0002
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0002
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0002
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0002
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0002
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0002
https://aws.amazon.com/device-farm/
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0004
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0004
http://www.bochs.sourceforge.net
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0006
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0006
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0006
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0006
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0007
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0007
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0007
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0007
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0008
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0008
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0008
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0008
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0009
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0009
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0009
https://dynamorio.org/dynamorio_docs/page_drcachesim.html
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0011
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0011
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0011
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0011
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0011
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0011
https://dynamorio.org/dynamorio_docs/overview.html
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0013
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0013
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0013
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0014
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0014
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0015
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0015
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0015
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0015
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0015
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0016
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0016
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0016
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0016
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0016
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0017
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0017
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0017
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0017
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0018
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0018
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0018
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0019
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0019
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0019
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/caches-and-self-modifying-code
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0021
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0021
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0021
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0021
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0021
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0021
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0021
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0021
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0022
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0022
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0022
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0022
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0022
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0023
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0023
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0024
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0024
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0024
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0024
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0024
http://linux-kvm.org/
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0026
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0026
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0026
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0027
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0027
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0027
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0027
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0027
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0027
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0027
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0027
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0027
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0027
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0028
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0028
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0028
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0028
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0028

Y. Choi, Y. Jeong, D. Jang et al. Computers & Security 113 (2022) 102569

N

O
P

P

P

P

Q

Q
Q

R

S

S

T

T

u

V
V

Z

Y

U
t

K

C

r
r

Y
c

r
s

s

D

S

K
a

u

s

i
s

e

s

H

a
c

p
P

H

t
i

S

B

M

i
A

t
a

i
m

ethercote, N. , Seward, J. , 2007. Valgrind: a framework for heavyweight dynamic
binary instrumentation. ACM SIGPLAN Not. 42 (6), 89–100 .

racle vm virtualbox, 2020. https://www.virtualbox.org/ .
ayer, M. , Gross, T.R. , 2011. Fine-grained user-space security through virtualization.

ACM SIGPLAN Not. 46 (7), 157–168 .
ék, G. , Bencsáth, B. , Buttyán, L. , 2011. nether: In-guest detection of out-of-the-guest

malware analyzers. In: Proceedings of the Fourth European Workshop on Sys-
tem Security, pp. 1–6 .

etsas, T. , Voyatzis, G. , Athanasopoulos, E. , Polychronakis, M. , Ioannidis, S. , 2014.

Rage against the virtual machine: hindering dynamic analysis of android mal-
ware. In: Proceedings of the Seventh European Workshop on System Security,

pp. 1–6 .
olino, M. , Continella, A. , Mariani, S. , D’Alessio, S. , Fontana, L. , Gritti, F. , Zanero, S. ,

2017. Measuring and defeating anti-instrumentation-equipped malware. In: In-
ternational Conference on Detection of Intrusions and Malware, and Vulnerabil-

ity Assessment. Springer, pp. 73–96 .

emu internals, 2012. https://qemu.weilnetz.de/w64/2012/2012- 06- 28/qemu- tech.
html .

uarkslab, 2019. QDBI. https://qbdi.quarkslab.com/ .
uynh, N.A. , 2018. SKORPIO: Advanced Binary Instrumentation Framework. OPCDE .

affetseder, T. , Kruegel, C. , Kirda, E. , 2007. Detecting system emulators. In: Interna-
tional Conference on Information Security. Springer, pp. 1–18 .

cott, K. , Kumar, N. , Velusamy, S. , Childers, B. , Davidson, J.W. , Soffa, M.L. , 2003. Re-

targetable and reconfigurable software dynamic translation. In: International
Symposium on Code Generation and Optimization, 20 03. CGO 20 03. IEEE,

pp. 36–47 .
un, K. , Li, X. , Ou, Y. , 2016. Break Out of The Truman Show: Active Detection and

Escape of Dynamic Binary Instrumentation. Black Hat Asia .
hemida, 2021. https://www.oreans.com/Themida.php .

hompson, C. , Huntley, M. , Link, C. , 2010. Virtualization Detection: New Strategies

and Their Effectiveness. University of Minnesota . (unpublished)
px, 2021. https://upx.github.io/ .

irtualpc, 2020. www.microsoft.com/windows/virtual-pc/ .
mware, 2020. http://www.vmware.com/ .

yngie, M. , 2015. Arm: Caches That Give You Enough Rope to Shoot yourself in the
Foot by Marc Zyngier. KVM Forum 2015 .

eseul Choi received the B.S. degree in Computer Science from Handong Global

niversity in 2015. She also received the M.S. in the Graduate School of Informa-
ion Security at Korea Advanced Institute of Science and Technology (KAIST), South

orea, in 2016. She is currently working toward the Ph.D. degree at the Division of
omputer Science, Korea Advanced Institute of Science and Technology (KAIST). Her

esearch interest includes software exploitation mitigation computer system secu-
ity, anti-emulation, trusted execution environments (TEEs).
15
unjong Jeong is currently a Ph.D candidate at Graduate School of Information Se-
urity from Korea Advanced Institute of Science and Technology (KAIST), South Ko-

ea, and also received the M.S. and B.S. from KAIST. His research interest includes
ystems and software security, in particular trusted execution environments (TEEs),

ecuring cloud workload and applied cryptography.

aehee Jang received B.S. degree in Computer Engineering at Hanyang University,

outh Korea, in 2012. He received M.S. and Ph.D. degree in Information Security at

orea Advanced Institute of Science and Technology (KAIST), South Korea, in 2014
nd 2019. Afterward, he joined as a postdoctoral researcher at Georgia Tech, USA

ntil the end of 2020. Currently, he is an assistant professor at Sungshin W. Univer-
ity Department of Convergence Security Engineering since 2021. Notably, he partic-

pated in various hacking competitions (including the DEFCON CTF finals) and won
everal awards. Also, he is the founder of pwnable.kr wargame. His research inter-

sts mainly include software vulnerability attack and mitigation, fuzzing, and web

ecurity.

ojoon Lee is currently an assistant professor at Department of Computer Science

nd Engineering at Sungkyunkwan University since September, 2019. Prior to his
urrent position, he spent one year as a postdoctoral researcher at CISPA under su-

ervison of Prof. Michael Backes. He recevied Ph.D from KAIST in 2018 advised by
rof. Brent Byunghoon Kang and his B.S. from The University of Texas at Austin.

is main research interests lie in retrofitting security in computing systems against

oday’s advanced threats. His research interests include but not limited to Operat-
ng System Security, Trusted Execution Environments, Program Analysis, Software

ecurity, and Secure AI Computation in Cloud.

rent Byunghoon Kang received the B.S. degree from Seoul National University, the

.S. degree from the University of Maryland at College Park, and the Ph.D. degree

n computer science from the University of California at Berkeley. He has been an
ssociate Professor with George Mason University. He is currently a Professor with

he Graduate School of Information Security, Korea Advanced Institute of Science
nd Technology (KAIST). He has been working in the field of systems security area,

ncluding botnet defense, OS kernel integrity monitors, trusted execution environ-
ent, and hardware-assisted security. He is a member of USENIX and ACM.

http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0029
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0029
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0029
https://www.virtualbox.org/
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0031
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0031
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0031
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0032
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0032
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0032
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0032
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0033
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0033
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0033
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0033
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0033
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0033
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0034
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0034
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0034
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0034
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0034
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0034
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0034
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0034
https://qemu.weilnetz.de/w64/2012/2012-06-28/qemu-tech.html
https://qbdi.quarkslab.com/
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0037
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0037
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0038
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0038
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0038
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0038
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0039
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0039
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0039
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0039
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0039
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0039
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0039
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0040
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0040
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0040
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0040
https://www.oreans.com/Themida.php
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0042
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0042
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0042
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0042
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0042
https://upx.github.io/
https://www.microsoft.com/windows/virtual-pc/
http://www.vmware.com/
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0046
http://refhub.elsevier.com/S0167-4048(21)00393-X/sbref0046

	EmuID: Detecting presence of emulation through microarchitectural characteristic on ARM
	1 Introduction
	2 Background
	2.1 Software emulation
	2.2 I-Cache and D-Cache coherency on ARM

	3 Related work
	3.1 Transparent software emulation
	3.2 Dynamic binary instrumentation
	3.3 Transparent software emulation
	3.4 Detecting software emulation using heuristic features
	3.5 Emulation detection in android
	3.6 Detecting virtualized environment

	4 Design
	4.1 EmuID objectives and deployment scenarios
	4.2 EmuID code and properties
	4.3 EmuID detection mechanism
	4.4 In-Depth analysis of EmuID execution in native vs emulated

	5 Implementation and evaluation
	5.1 EmuID implementation
	5.2 Evaluation of emulation detection accuracy
	5.3 Evaluation on real mobile devices

	6 On the difficulty of mitigating EmuID
	6.1 Detecting and nullifying EmuID through manual analysis
	6.2 Compatibility issues with W^X Policy
	6.3 Modifying code translation granularity
	6.4 Emulating native cache behavior

	7 Conclusion
	Declaration of Competing Interest
	Acknowledgement
	Appendix A First Appendix
	References

