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a b s t r a c t 

Software emulation is at the core of efficient automated software analysis. It allows efficient use of com- 

puting resources by running multiple instances on a single machine. Also, software emulation naturally 

provides a strong sandboxing that contains the analyzed target software. Software emulation techniques 

and principles have been implemented in dynamic binary translators (DBI) and emulators used exten- 

sively in practice. Transparency of emulation is one of the essential aspects of emulation engines. That is, 

hiding the presence of emulation from the software that is being emulated is vital in many use cases of 

software emulation (e.g., malware analysis). Detecting the presence of emulation through various meth- 

ods and preventing such exploits have been an important topic in the field. Emulation detection is com- 

monly used in protecting commercial software against reverse engineering or abused by malware de- 

velopers who intend to sabotage their malware analysis. Many works have proposed methods for em- 

ulation detection, while others introduced mitigations. In this paper, we present EmuID that exploits a 

peculiar microarchitectural caveat of the ARM architecture to detect emulation. Our method is accurate, 

implementation-agnostic, and robust. Our evaluations show that our method detects ARM execution in 

well-known emulation engines on ARM (i.e., ARM-on-ARM) as well as cross-architecture ARM emula- 

tion on the x86 architecture (i.e., ARM-on-x86. Also, mitigation of our approach would require non-trivial 

modifications to emulation engines, unlike the heuristics-based detection methods that can be readily 

mitigated once the mechanisms are known. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Software emulation has been an integral part of large-scale and 

utomated software analysis. Multiple instances of an emulated 

xecution environment can be deployed on a single machine to 

se the computing power efficiently. Software emulation also ef- 

ectively sandboxes the running program. With full control of the 

mulated program’s execution, software emulators can aptly con- 

ain the behavior of the emulated software within a certain bound- 

ry. The principles of software emulation have been implemented 

n the form of dynamic binary instrumentation (DBI) and program 

nd system emulators. 

Software emulation has been utilized in practice for a long 

ime. Dynamic binary instrumentation (DBI) engines such as Dy- 

amoRio ( Bruening et al., 2003 ) and Intel PIN Tools ( Luk et al.,

005 ) are highly sophisticated and mature and have numerous 
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ractical use cases ( D’Elia et al., 2019 ). These tools allow flexible 

ode injection and transformation on the emulated software and 

ence widely used in software analysis. QEMU ( Bellard, 2005 ), a 

serspace and full-system emulator, also builds on top of the same 

et of software emulation principles and techniques. 

Software emulation is often deployed for dynamic analysis of 

oftware that is protected through obfuscation (e.g., packing). Since 

he program code and data are not visible in the static analysis, au- 

omated dynamic analysis tools are built using emulation to moni- 

or the program’s behavior ( D’Elia et al., 2019 ). Automated analysis 

f malware and protected software is one such example. 

Many software emulation engines seek robustness against em- 

lation detection techniques. Many malware or protected software 

re equipped with a so-called anti-emulation feature that checks 

f it is inside an emulation environment and terminates when the 

heck reports true. A reliable method without false-positives that 

etects the presence of emulation is pivotal in anti emulation. 

rom the perspectives of the developers of emulation engines, it is 

mportant to mitigate such detection and ensure emulation trans- 

arency for many use cases of software emulation. 

https://doi.org/10.1016/j.cose.2021.102569
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2021.102569&domain=pdf
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There are many works that proposed emulation detection tech- 

iques using features that break transparency, demonstrating the 

mportance of the issue. Many works have presented new meth- 

ds that can detect the presence of emulation ( Falcón and Riva, 

012; Hron and Jermář, 2014; Jang et al., 2019; Jing et al., 2014; 

irsch et al., 2018; Li and Li, 2014; Petsas et al., 2014; Polino et al.,

017; Raffetseder et al., 2007; Sun et al., 2016 ). In response, re- 

earchers have proposed alternative software emulation engine de- 

igns that are immune to such detection methods ( Bruening et al., 

012; Polino et al., 2017 ). Many existing emulation detection meth- 

ds depend on heuristics; the presence of various artifacts may 

rise due to emulation. For instance, X. Li et al. and T. Raffets et al.

resented emulation detection by catching a certain artifact such 

s memory usage and time overhead ( Li and Li, 2014; Raffetseder 

t al., 2007 ). Catching an incomplete emulation of the actual envi- 

onment such as page permission and self-modifying code was also 

sed to detect emulation ( Hron and Jermář, 2014; Jang et al., 2019; 

un et al., 2016 ). A number of studies explored detection meth- 

ds using various artifacts or behaviors ( Falcón and Riva, 2012; Jing 

t al., 2014; Kirsch et al., 2018; Petsas et al., 2014; Polino et al., 

017 ). Since these methods exploit artifacts that are specific to cer- 

ain emulation engines, their methods are not generalizable to dif- 

erent types of emulation engines. 

In this paper, we present an emulation detection method called 

muID that takes advantage of the microarchitectural caveat of 

he ARM architecture. Our novel detection method shows that 

aintaining emulation transparency is much more challenging 

han previously thought.The detection method uses a meticulously 

rafted code that causes a peculiar cache behavior in native ex- 

cution environments. The cache behavior is, however, difficult 

o reproduce in emulated execution environments. Our detection 

ethod is deterministic, implementation-agnostic, and robust. Ad- 

itionally, EmuID code has a small footprint and execution time, 

uch that it can be embedded into any application. It is determin- 

stic because it successfully detects the presence of emulation 100 

ercent of the time, as our evaluation shows, and does not require 

epeated measurements nor a heuristically determined threshold. 

e also present an evaluation that shows our detection method 

uccessfully detects all well-known software emulation engines on 

he ARM architecture and the cross-architecture emulation engine 

n the x86 architecture. Our method is robust; mitigating our de- 

ection method will require non-trivial modifications to the inher- 

nt mechanisms of the software emulation engines, to the point 

here the mitigation would have an impact on target emulation. 

We summarize our contributions as the following: 

• We introduce a robust software emulation detection method 

called EmuID that takes advantage of the cache behavior of 

ARM architecture. 

• We provide an in-depth analysis of the detection method’s 

mechanism and its effect on the processor cache in a native vs. 

emulated execution environment. 

• We evaluated the accuracy of the method against well-known 

software emulation engines on the ARM architectures and the 

cross-architecture emulation engine on the x86 architecture. In 

addition, we confirmed that there are no false positives by test- 

ing the method on 155 ARM devices. 

• We discuss possible mitigations of the attack, although we con- 

cluded that none of them were practical. 

The rest of this paper proceeds as the following: we provide 

nowledge that can help readers better understand our paper and 

over the related work in Section 2 . The design and key mecha- 

ism of our detection method are explained in detail in Section 4 . 

e present the evaluation results that show the accuracy and 

mplementation-agnostic aspects of our method. In Section 6 , we 
2 
xplain why modifying the software emulation engines to mitigate 

ur method would be challenging. We will conclude in Section 7 . 

. Background 

In this section, we explain the background information that is 

ecessary for understanding our work. Since our work exploits the 

nique cache behavior of the ARM architecture that is difficult for 

oftware emulation to mimic, it is necessary that we explain the 

echanism of software emulation and ARM cache coherency in a 

oncise manner. 

.1. Software emulation 

In this paper, we use the term software emulation to 

efer to dynamic binary instrumentation tools such as Dy- 

amoRio ( Bruening et al., 2003 ), Pin ( Luk et al., 2005 ), and Val-

rind ( Nethercote and Seward, 2007 ) as well as user-level/full- 

ystem emulator like QEMU ( Bellard, 2005 ). DBI and emulators 

uild on the same set of principles and operate in a vastly similar 

anner. However, we do not include virtualization in our definition 

f the term software emulation. Today’s virtualization runs guest 

ode directly on the processor with hardware-assisted virtualiza- 

ion features and involves only a small amount of emulation. 

The techniques and principles of the two categories of software 

mulation are similar, but the two are geared towards specific ob- 

ectives. Pin and DynamoRio focus on user program instrumen- 

ation. On the other hand, QEMU offers user program execution 

mulation as well as the same architecture and cross-architecture 

e.g., emulating an ARM processor on x86) but does not focus on 

ode instrumentation. The two categories of software emulation 

oth perform a translation process on the original code – with or 

ithout instrumentation or into different or identical architecture 

and execute the process’s product. 

In software emulation, the target program is never executed di- 

ectly on the hardware. The target program’s code is fetched one 

asic block at a time, then translated to be placed on the transla- 

ion code cache before execution. The translation process may in- 

ert code for analysis or transform the original code with a user- 

iven set of transformation rules. Dynamic binary translators take 

ull control of the target program’s control flow. Only translated 

ode cache is executed and it returns its control flow back to the 

mulation engine. Branch, jump or call instructions whose destina- 

ions do not already reside in the code cache are instrumented to 

nvoke the translator. In turn, the translator would fetch the next 

asic block to be executed and creates an instrumented version 

f it inside the translation cache. The translator also makes the 

ranch or call instructions that point to the instrumented version 

f the target program instead of the original target. 

Fig. 1 is the abstracted version of this process. This way, the 

mulation software maintains full control over the target program 

xecution. 

Our detection method utilizes the fact that the granularity of a 

ache in the translation cache is a block. To aid the reader’s un- 

erstanding, we will be using the following notation to denote the 

riginal code and its counterpart in the translation cache: T: B → 

 T 

.2. I-Cache and D-Cache coherency on ARM 

Modern architectures such as ARM and x86 employ a split 

ache model on L1 caches in which there are separate caches for 

nstructions ( I-cache ) and data ( D-cache ). Such design increases the 

erformance since the program has distinct access patterns regard- 

ng instruction fetch and data accesses. For instance, program in- 

tructions are seldom modified, unlike data. In this L1 cache de- 
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Fig. 1. Translation process in emulation. During the translation process, the origi- 

nal binary and the emulation code for one basic block are loaded into the trans- 

lation code cache and then executed. After executing one basic block in the code 

cache, the emulation environment repeats the above process for the next basic 

block. The example figure shows that basic block 7 is converted and executed after 

basic blocks 1, 2, 5, and 6 executes. 
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t

a

f

ign, which is often referred to as modified Harvard architecture or 

plit cache design , instruction fetches from memory are stored in 

he I-Cache and data fetches or stores are cached in the D-Cache . 

The subject that is responsible for maintaining I-cache and D- 

ache coherency is architecture-dependent. In the x86 architec- 

ure, the processor itself detects incoherencies and invalidates the 

-cache upon update on its counterpart in D-cache. On the other 

and, all existing ARM architecture variants do not have such a 

eature; this means that the software is responsible for avoid- 

ng problems that can stem from the issue. Hence, programmers 

ust maintain coherency when writing software that exhibits code 

odification behavior such as the ones that involve Just-In Time 

JIT) compilation or Self-Modifying Code (SMC) ( Jacob, 2013 ). I-cache 

nvalidation can be achieved with the SYS_cacheflush system 

all on AARCH32 and a user-level instruction such as IC variants 

f instructions are available on AARCH64 . 

. Related work 

We explain related works in the field of emulation detection. 

etecting software emulation has been an interest of researchers 

nd practitioners; malware or protected software often includes 

nti-emulation techniques such that it refuses to run in emu- 

ated environments to avoid being analyzed. EmuID presents a 

ovel detection method that uses the unique architectural behav- 

or of the ARM architecture. Our technique differs from the existing 

euristics-based approaches that are often trivially mitigated once 

he heuristic is known. 

.1. Transparent software emulation 

Transparency is one of the requirements for correctness and 

ecurity in an emulation environment. Every emulation system 

as its own trade-offs between transparency and performance 

r emulation capabilities ( Aarch64 port, 2020; Bruening et al., 

012; Hazelwood and Klauser, 2006; Nethercote and Seward, 2007; 

emu internals, 2012; Zyngie, 2015 ). One aspect of transparency is 

bout the correctness of the emulation. While the emulated pro- 

ram is heavily modified for the sake of emulation, the apparent 

ehavior and execution results must be identical to its native exe- 

ution ( Anton et al., 1998; Bruening et al., 2012 ). Another aspect of

ransparency is the robustness of emulation against emulation de- 

ectors. Since software emulation is often leveraged for automated 

oftware analysis, the robustness against detection is an important 

spect of emulation engines. If it is discovered that the software is 
3 
eing emulated, the software that wants to hide its logic, especially 

alware or commercial software, can make analysis more difficult 

y not executing the intended behavior. 

.2. Dynamic binary instrumentation 

DBI has developed steadily in response to the need to instru- 

ent and modify programs at runtime since DynInst ( Buck and 

ollingsworth, 20 0 0 ) appeared. Pin ( Luk et al., 2005 ), Dy-

amoRIO ( Bruening et al., 2003 ), and Valgrind ( Nethercote and 

eward, 2007 ) are the most well-known DBI frameworks. They 

re most widely used in academia and industry and support var- 

ous architectures and operating systems. The Pin is a closed 

ource framework that strongly supports the instrumentation of 

rograms running on Intel architecture. DynamoRIO is an open- 

ource framework that provides excellent performance and en- 

bles analysis of entire instructions and direct low-level code 

odification. Valgrind instruments using a generated intermedi- 

te representation that makes it portable to a variety of architec- 

ures, so there is a relative performance penalty. In addition, Frida 

 Karl Trygve Kalleberg, 2016 ), which allows users to write analysis 

odes in JavaScript directly, Strata ( Scott et al., 2003 ), which pro- 

ides software dynamic translation even if the architecture of the 

ost and guest are different, and libdetox ( Payer and Gross, 2011 ), 

hich advances security through a design that considers trans- 

arency. In addition, various DBI frameworks ( Mulliner et al., 2013; 

uarkslab, 2019; Quynh, 2018 ) have been introduced. 

.3. Transparent software emulation 

Transparency is an important the requirements for correctness 

nd security in an emulation environment. Every emulation sys- 

em has its own trade-offs between transparency and performance 

r emulation capabilities ( Aarch64 port, 2020; Bruening et al., 

012; Hazelwood and Klauser, 2006; Nethercote and Seward, 2007; 

emu internals, 2012; Zyngie, 2015 ). One aspect of transparency is 

bout the correctness of the emulation. While the emulated pro- 

ram is heavily modified for the sake of emulation, the apparent 

ehavior and execution results must be identical to its native exe- 

ution ( Anton et al., 1998; Bruening et al., 2012 ). 

There are several works that discuss the issue of transparency. 

ruening et al. state, the further we push transparency, the more 

ifficult it is to implement, while at the same time fewer ap- 

lications require it, discusses possible solutions to each trans- 

arency problem, and suggests guidelines that should be followed 

n DBI design ( Bruening et al., 2012 ). Julian et al. show that the at-

acker can interfere with the inspection and interposition capabili- 

ies of the emulation framework if isolation is not satisfied among 

he three properties (isolation, inspection, interposition) essential 

o the monitoring system proposed by Garfinkel et al. (2003) ; 

irsch et al. (2018) . 

In this work, we discuss mainly the emulation transparency in 

erms of robustness against emulation detectors. Since software 

mulation is often leveraged for automated software analysis, ro- 

ustness against detection is an important aspect of emulation 

ngines. Emulation detection techniques like the one we propose 

n this work, break the transparency of emulation. We propose 

muID in the hopes of improving the emulation transparency of 

uture emulation engine implementations. 

.4. Detecting software emulation using heuristic features 

Raffetseder et al. proposed a method to detect the sys- 

em emulator using the fact that, in the emulator, the CR3 

ccess time takes longer, and the cache invalidation speed is 

aster ( Raffetseder et al., 2007 ). Daehee Jang et al. proposes a fast 
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Fig. 2. Pseudocode of EmuID . 

4

d

T

e

p

a

S

t

t

d

a

n

4

s

t

w

g

s

t

a

nd accurate anti-emulation technique that utilizes misaligning the 

ectorization ( Jang et al., 2019 ). Recently, various attack techniques 

or detecting DBI environment for DBI detection and evasion have 

een published. There are several various techniques to detect DBI 

ools, such as DynamoRIO or Pin tool. Xiaoning Li et al. use the 

ifference of file-related information and resource usage to detect 

mulation environment ( Li and Li, 2014 ). Ke Sun et al. and Mario

olino et al. detect using the features that appear because the 

mulation environment uses the translation code cache ( Polino 

t al., 2017; Sun et al., 2016 ). Julian Kirsch et al. detects emulation

nvironment using code cache/instrumentation artifacts, JIT com- 

iler over-head, and runtime environment artifacts ( Kirsch et al., 

018 ). Francisco Falc’n et al. uses various features, including time 

verhead of dynamic library loading, code pointers, memory con- 

ents and permissions, and interaction with the OS ( Falcón and 

iva, 2012 ). Martin Hron et al. also mention detecting an emulation 

nvironment using a page permission violation ( Hron and Jermář, 

014 ). 

Many of the existing heuristics-based detection methods can be 

itigated with a reasonable amount of effort. Once the heuristic 

hat is used for detection is known, emulation engines can be up- 

ated in response to the detection method. However, EmuID ex- 

loits the architectural character of the ARM architecture and re- 

uires fundamental changes to emulation engines, as we will ex- 

lain. 

.5. Emulation detection in android 

Various anti-emulation techniques in the Android environment 

ave also been proposed. Jingn, Yiming, et al. showed research 

hat automatically collects and analyzes more than 10,0 0 0 heuris- 

ic artifacts for detection in the Android emulation environment 

 Jing et al., 2014 ). Petsas, Thanasis, et al. also propose anti-analysis 

echniques that malware can use to bypass dynamic analysis in 

he Android emulation environment ( Petsas et al., 2014 ). Emula- 

ion detection technology is presented in three ways according to 

he analysis method in this paper: static, dynamic, and VM-related 

ntricacies. In addition, there are two paragraphs mentioning that 

etection is possible using ARM’s cache structure. However, the 

ethod is probabilistic, and the exact detection principle has not 

een investigated and tested. 

.6. Detecting virtualized environment 

Thompson et al. researched to detect the virtualization envi- 

onment of QEMU ( Bellard, 2005 ), VMware ( Vmware, 2020 ), 

nd KVM ( Kvm, 2020 ) using counter-based timing 

ethod ( Garfinkel et al., 2007a ), which uses features that have 

aster execution speed of specific instructions ( Thompson et al., 

010 ). Peter Ferrie surveys attacks using differences in behavior for 

nstruction execution on various virtual machines ( Ferrie, 2007 ). 

his research analyzes known attacks on VMware ( Vmware, 2020 ) 

nd Virtual PC ( Virtualpc, 2020 ) and describes new attacks and 

efenses against Bochs ( Bochs: The open source ia-32 emulation 

roject, 2020 ), QEMU ( Bellard, 2005 ), and VirtualBox ( Oracle vm 

irtualbox, 2020 ). Garfinkel et al. reveals the virtual machine 

nvironment using logical, resource, and timing discrepancies and 

rgues that building a transparent VMM is essentially impossi- 

le ( Garfinkel et al., 2007b ). Pék et al. (2011) demonstrates a 

echnique for detecting hardware-assisted virtual platforms based 

n CPU-specific design defects. Brengel et al. (2016) proposes a 

echnique to detect hardware-virtualized systems using low-level 

iming-based mechanisms. However, techniques based on discrep- 

ncies caused by the heuristic feature suggested above are less 

ccurate or can be bypassed by developer updates. 
4 
. Design 

In this section, we first explain the objective of EmuID and the 

eployment scenarios where it can play crucial role in Section 4.1 . 

hen, we provide a multifaceted view of EmuID mechanism; We 

xplain the key properties of our detection method in Section 4.2 , 

resent a C-like pseudocode of the implementation ( Fig. 2 ), and 

n in-depth phase-by-phase illustration of EmuID ’s execution in 

ection 4.4 . The phase-by-phase analysis illustrates how the con- 

ents in memory, cache, and code translation cache, in both na- 

ive and emulated execution in the different stages, would appear 

uring the execution of our detection code. Based on the in-depth 

nalysis given in this section, we explain mitigating the attack is 

on-trivial in current DBI engines in Section 6 . 

.1. EmuID objectives and deployment scenarios 

Objectives. Our emulation detection method, called EmuID , 
eeks to provide a reliable and universal way to detect emula- 

ion on ARM against all well-known emulation engines that are in 

idespread use. Retrofitting the existing software emulation en- 

ines to nullify EmuID would be a non-trivial challenge, unlike 

ome of the existing detections that rely on heuristics. EmuID code 

akes advantage of the microarchitectural characteristic of the ARM 

rchitecture. More specifically, EmuID detection code is meticu- 
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ously crafted to yield contrasting cache behaviors in the native 

nd the emulated execution environment. Mitigating EmuID would 

equire iterations of non-trivial design challenges in the software 

mulation engines. Even then, the additional performance over- 

ead and the required amount of effort would render the bypass- 

ng of the detection rather difficult. 

Deployment Scenarios. Emulation detection is pivotal in imple- 

enting anti-emulation features in protected software. Many pro- 

ected software is packed or obfuscated to prevent static analysis. 

nti-emulation actively resists dynamic analysis techniques based 

n software emulation by abruptly terminating the program upon 

etecting the presence of emulation. Hence, a reliable emulation 

etection technique like EmuID is a double-edged sword; it can 

e used to protect intellectual properties or hinder timely malware 

nalysis. 

.2. EmuID code and properties 

We implemented EmuID as a self-modifying code that termi- 

ates immediately upon detecting that it is being run in an emu- 

ated environment. The pseudocode that illustrates the behavior of 

muID is shown in Fig. 2 . 

The EmuID proof-of-concept is a minimal example that proves 

ur detection method. However, it can be incorporated into a pro- 

ram in a stealthy manner using various techniques. This is espe- 

ially true when software that employs emulation detection tech- 

iques is often highly obfuscated malware or protected commercial 

oftware. The logic of the detection code can be hidden in a benign 

iece of code or mutilated and obfuscated in many arbitrary ways. 

Also, in many use cases of software emulation such as malware 

nalysis, emulation engines have no option but to allow behav- 

or that violates the W ̂ X policy. This is because many obfuscated 

alware and similarly protected software use self-modifying code 

rom hiding their behavior until runtime. For this reason, we ex- 

ect that the EmuID code can easily blend in with the analyzed 

arget software. 

EmuID code. During the bootstrapping process, an RWX 
muID code is loaded into a memory page such that the code can 

odify itself (Line 37 in Fig. 2 ). EmuID code is composed of two

omponents: the launcher ( L ) and the detector ( D ). L and D are

ositioned consecutively; D will be executed in order as L finishes. 

 is initially an array initialized with 0xc1035fd6 (Line 25). The 

alue is a ret instruction. The launcher modifies or unpacks the 

etector by performing xor operations on D with a 32-bit integer 

EY (Line 12). After the modification ( D → D's ), the initial value

xc0035fd6 will be unpacked into 0xd65f03c1 which is not a 

alid ARM instruction. The detector part of the code is designed to 

ause program termination in emulated execution environments. 

In native execution environments, 0xc1035fd6 ( ret ) will be 

xecuted, and the detector will return without an error. On the 

ther hand, an invalid instruction fault will be raised in emulated 

nvironments as a result of executing 0xd65f03c1 . The detection 

ode can be embedded into programs to detect and possibly deter 

utomated emulated-based analysis. However, the content of the 

etection code itself does not create contrasting behavior in native 

s. emulated. 

EmuID code properties. EmuID detection method has unique 

roperties that play a crucial role in making the code yield differ- 

nt results in native vs. emulated. First, we intentionally omit the 

-cache invalidation procedure that is usually accompanied after 

ode modification (Line 17). The ARM architecture leaves the task 

f synchronizing the I-cache and D-cache entries of the same cache 

ine to software, as we explained briefly in Section 2.2 . Fig. 3 illus-

rates the structure. Second, the length of L and D combined does 

ot exceed the cache line size (64 bytes in the case of AARCH64 ). 
lso, L is aligned to a cache line such that L and D belong in the
5 
ame cache line. This causes D to be loaded into i-cache along with 

 executes. Lastly, another important characteristics of the struc- 

ure is that L and D are two different basic blocks, separated by a 

ranch instruction (e.g., Line 15 in Fig. 2 ). The significance of these 

hree characteristics will be further explained in this section. In all, 

he special properties of EmuID code can be summarized as the 

ollowing: 

1 I-cache invalidation is intentionally omitted after code update 

2 Launcher and Detector are placed in the same cache line 

3 Launcher and Detector are two different basic blocks separated 

by a branch instruction 

.3. EmuID detection mechanism 

Instruction fetching in native vs. emulated. In a native exe- 

ution environment, code is fetched from memory into processor 

-cache with a cache line granularity. The processor then start ex- 

cuting the code from the I-cache. On the other hand, in the emu- 

ated environment, the software emulation adds another layer to 

his process. Emulation engines fetch all code before execution, 

akes a translated copy in the translation code cache, and ex- 

cutes the translated version. The emulation engine fetches the 

riginal code with basic block granularity. The particular behav- 

or of the emulation engine may cause basic blocks in the same 

ache line to be separated as they are copied in the translation 

ode cache, and EmuID takes advantage of the behavior for emu- 

ation detection. 

I-cache/D-cache incoherency in ARM. Fig. 4 demonstrates how 

muID code work. When L is executed for the first time, a cache 

iss occurs and the cache line that L and D belongs is loaded 

nto the I-cache ( P2 ). L modifies D as it executes, and this mod-

fication is most likely reflected on the copy of D in the D-cache 

hich is fetched from memory during the bootstrapping. This is 

he moment where an incoherency between the I-cache and D- 

ache occurs; Actually, only D in D-cache is modified to D’, and D 
n I-cache is not modified. Hence the D remains in the I-cache. In 

ther words, I-cache and D-cache have different codes at the same 

ddress. To resolve this incoherency, most common self-modifying 

odes flush the cache to reflect the modified contents to the I- 

ache after modification. However, we designed not to flush the 

ache after the D is modified to D’ in order to leave D in I-cache. 

After L execution is completed, D’ is executed. A copy of un- 

odified D has been fetched as instruction into the I-cache, and 

-cache contains D's , which was first loaded as data and modi- 

ed by L . Since D is already located at the address of D’ of I-cache,

 cache hit occurs when CPU accesses D’. Therefore, D in I-cache is 

xecuted instead of D’. Due to the lack of hardware-level I-cache D- 
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Fig. 4. EmuID overview. In the native environment, 1 © L modifieds D to D’. As 

a result, D’ should be executed, but D is executed due to cache incoherency. In 

the emulation environment, 2 © L is translated to L T in translation code cache by 

emulation engine. 3 © L T modifies D to D’. 4 © D’ is translated to D T in translation 

code cache by emulation engine. As a result, D't is executed as expected. 
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ache syncing on the ARM architecture and property P1 of EmuID , 
he processor executes D in the I-cache as a result of a cache hit. 

n this way, we induced D consisting of ret instructions to be ex- 

cuted unexpectedly instead of D’ in the native environment. Since 

 is composed of a series of ret instructions, EmuID code essen- 

ially does nothing but simply returns the control-flow to the orig- 

nal caller. 

Code execution and data access in emulated execution. The 

mulation engine intervenes with all code fetches, but not data ac- 

esses; The instructions that access data may be instrumented for 

arious purposes, the access to data is not obstructed and reaches 

he in-memory original copy. This creates complexities when emu- 

ating an self-modifying code. The emulation engine must be on 

atch (e.g., by catching all memory modifications to the RWX 

ages) for modifications to code pages so that it can invalidate its 

ode caches when the original copies of the cache are modified. 

e explain how this characteristic of emulation engines further 

omplicates EmuID mitigation in Section 6 . 

EmuID execution in emulation environment. The process of 

nstruction fetching in the emulation environment is different from 

hat in the native environment. In the emulation environment, the 

riginal binary is not directly fetched into I-cache. The code block 

f the binary is dynamically translated with basic block granularity 

nd fetched into the translation code cache. 

After one basic block is translated and executed, the emulation 

nvironment checks the position of the next code block, and the 

ext basic block is processed sequentially. 

In our detection method, we intentionally place the L and the 

 in the different basic block. In order to execute the L , the emu-

ation engine first translates the basic block of the L to the L T and

etches it to the translation code cache. After that, the L T in the 

ranslation code cache is fetched into the I-cache for execution. The 

 T fetched in I-cache is executed by CPU. The L T modifies the D to
he D’. The L T modifies the code of the original binary when the 

odification occurs without modifying the translation code cache. 

After the execution of L T is finished, the emulation engine 

hecks whether the next basic block to be executed is in the trans- 

ation code cache. Since the D’, which is the next basic block to be

xecuted, has never been fetched into the translation code cache, 

he emulation engine translates the D’ to D't and fetches it to 

he translation code cache. The D't in the translation code cache 

s fetched into I-cache for execution and then executed by CPU. In 

his way, we induced D't consisting of undefined instructions that 

enerate an error to be executed in the emulation environment, in 

ontrast to the native environment that executes the D . 
6 
.4. In-Depth analysis of EmuID execution in native vs emulated 

In this section, we describe the overall detection flow and the 

hanges in memory and cache contents per step. The location of 

ach phase is indicated in Fig. 2 . 

I Launcher ( L ) and Detector ( D ) has been loaded into memory 

II Launcher L is about to be executed. I-cache is loaded with the 

cache line that contains L 
III Launcher L has finished executing 

IV Detector D , which has been modified by L ( D → D's ), is about

to be executed. 

The execution flow of the detection algorithm in the native en- 

ironment and the emulation environment is depicted in Figs. 5–

 . Figures consist of split cache in CPU and memory in which the 

rogram running EmuID is loaded. Also, the program has L basic 

lock and D basic block. The emulation execution in these figures 

hows the operation in both ARM and x86 architectures. Both ARM 

nd x86 architectures mostly have L1 cache composed of split I- 

ache and D-cache, and the emulation engine translates with ba- 

ic block granularity in both architectures. ARM and x86 architec- 

ures differ when it comes to cache coherency policies (manual 

s. automatic). However, in the emulation environment, there is no 

xecution that requires cache coherency, so the execution flow of 

muID in both architectures is similar. 

Phase 1: Initial state. Fig. 5 shows the initial state in the na- 

ive environment and the emulation environment. EmuID code has 

een loaded into memory and ready to be executed. The L and 

he D have been copied into the executable page allocated through 

he mmap() function. As a result of the copying, L and D have 

een fetched into the D-Cache. Up to this phase, the contents of 

muID code in memory and caches are the same in native and 

mulation execution. 

Phase 2: L is about to execute. Fig. 6 captures the moment 

hen L is about to execute on the processor. In native execution, 

n instruction fetch on L has occurred and the cache line that con- 

ains L has been placed in the I-cache. Because of P2, L and D are

ositioned in the same cache line, and D is loaded into the I-cache 

long with L at this moment. 

In emulated execution, however, L is not directly executed. The 

mulation engine catches a translation code cache miss since L is 

xecuting for the first time. In turn, the engine fetches the code 

s data, performs necessary translations, then places it in the code 

ache. It should be noted that this code fetching is done basic block 

y basic block , unlike the instruction fetch performed by proces- 

ors, which has a granularity of cache lines. 

As a result, L T (counterpart of L in the translation code cache) 

s fetched by the processor to be executed. Additionally, a subtle, 

ut rather significant difference occurs here. Unlike the case of the 

ative execution, D is not loaded in the I-cache along with L . This 

s because L and D are two different basic blocks (P3). These dif- 

erences affect the consequent executions to cause completely dif- 

erent results in the native execution and emulated execution. 

Phase 3: L has finished executing. 

Fig. 7 shows when the L has finished executing. As shown in 

ine 12 in Fig. 2 , L modifies D and the now modified D is de-

oted as D’. In the native execution, writes to D may be reflected 

n the corresponding cache line in the D-cache. This is where in- 

oherency between the entries for D in I-cache and D-cache arise. 

he D-cache has received the modification, but not the I-cache. As 

e discussed in Section 2.2 , this discrepancy is not automatically 

econciled by the ARM microarchitecture. Therefore, a stale copy of 

 is left behind in the I-cache. 

In the emulation environment, the L T has been executed. Con- 

equently, the D has been modified to D’. In emulated execution, 

ata read and writes behavior is not altered unless given a specific 



Y. Choi, Y. Jeong, D. Jang et al. Computers & Security 113 (2022) 102569 

Fig. 5. Phase 1. Initial State. L and D are loaded into RWX memory. To this end, L and D are first loaded in D-cache and then updated in memory. 

Fig. 6. Phase 2. Launcher is ready to be executed. In A, L is loaded into I-Cache. Since L and D are in the same cache line, D is loaded along with L as a side effect. In B, L 
is fetched, translated to become L T , which is then placed in the code cache. L T is loaded into I-cache (Notice that D is not loaded into I-cache). 

Fig. 7. Phase 3. Launcher has finished executing. The D is modified to the D’. In A, since there has been no explicit I-cache invalidation, D in I-cache is stale from this point 

on. 
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ranslation rule. Hence, the modifications to D performed by L are 

ot different from those of the native execution. However, the dif- 

erence from the native execution that must be pointed out here is 

hat D has not been loaded into the I-cache. Therefore, when D is 
nally executed by the processor, it will cause an I-cache miss, as 

e will explain in the next phase. 

Phase 4: D’ is about to execute. 

In this phase, the EmuID code manifests its contrasting behav- 

ors in native vs. emulated execution environments. In native ex- 

cution, a cache hit occurs on a copy of D in the I-cache; the 

emory writes to D has only been reflected on the copies in 

he D-cache or memory, but a I-cache hit occurs on the stale 

opy in the I-cache as intended with P1. The final result of 
7 
he EmuID code execution in native execution is essentially an 

mpty function; D , rather than D’, executes and a ret instruc- 

ion in D immediately hands over the control-flow back to the 

aller. 

Meanwhile, in the emulated execution, D't is executed. P3 has 

eparated L and D such that only L has been fetched through the 

nstruction fetch sequence of the emulation engine to leave L T in 

ranslation code cache and the I-cache. D , on the contrary, has 

ever been fetched as an instruction. Hence when D is executed 

s L terminates, it is fetched for the first time to be first translated 

nd executed. This means that the emulation engine will read D’ 

which has been already modified), from either D-cache or mem- 

ry to create D't . D't is executed as the final result, and the un-
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Fig. 8. Phase 4. D’ is ready to be executed. In A, the processor tries to execute D’, finds its address in I-cache (cache hit). Not knowing that D in I-cache is stale, the processor 

executes it. In B, the emulation engine has never executed D , and it is not found in the translation code cache (TCC miss). The code cache for D must be created. Thus, the 

resulting code cache in the translation code cache would be D't . And then, D't is executed on the processor. 
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Fig. 9. Self-Modifying code of EmuID for the 64-bit ARM and x86 architecture. The 

code before line 20 is the L that sets the register and dynamically modifies the D 
to the D’. From line 27 is the detector ( D ). The branch instruction in line 20 was 

used to make the L and the D belong to different basic blocks. The value of the key 

for XOR is set in line 9 and the loop counter for XOR is set in line 10. The position 

of the D is also set in lines 11–12. Lines 13–19 contain the contents of the loop to 

XOR with the ret instruction and the key. 
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efined instruction in D’, which essentially works as a trap , ter- 

inates the execution. 

. Implementation and evaluation 

We conducted a thorough evaluation to prove the effectiveness 

nd accuracy of EmuID . First, we tested EmuID against three emu- 

ation engines on four different ARM-based devices. The detection 

f a cross-architect emulation engine on two different x86-based 

evices was also tested. 

This experiment is intended to show that the detection method 

f EmuID is generalizable to different emulation engine implemen- 

ations It also indicates that the EmuID is applicable to ARM emu- 

ation engine running on other architecture. 

The experiment should also test the occurrence of possi- 

le false-negatives by EmuID detection. Second, we also ran the 

muID detection test on 159 types of ARM-based devices to mea- 

ure any occurrences of false-positives . Additionally, we measured 

he time consumed for each detection. 

.1. EmuID implementation 

Fig. 9 is EmuID code written for the 64-bit ARM and x86 

rchitecture we used for the evaluation, whose operation is de- 

ailed in Section 4 . The EmuID code is implemented separately 

or both 32-bit and 64-bit architecture due to ISA and cache line 

ize differences. However, the effectiveness and accuracy of the 

wo implementations are identical, as assured by our experiment 

esults. The 32-bit implementation of EmuID can be found in 

ppendix A . EmuID has a small footprint so that it can be em-

edded in other programs to detect emulation. A developer can 

ootstrap EmuID by copying it into an RWX page and executing 

t, as shown in section Section 4.2 . As a final execution result, 

muID simply returns to its original caller in native execution, but 

t will cause an illegal instruction fault in emulated execution. 

From line 7 to line 20 is the launcher ( L ), and from line 27 is

he detector ( D ). In L , The register x0 is used as a position of the

 . The register x1 (w1) is used as a temp register for xor . The

egister x2 (w2) is used as a key using for xor . The register x3
s used as a loop counter. The value of the key for xor is set 1 in

ine 9, and the loop counter for xor is set in line 10. The position

f the D is set in lines 11–12. 

After the register values are set, the L modifies the D , which 

s initially a series of ret instructions. The modified D’ is now a 
8 
eries of ( 0xd65f03c1 ). Lines 13–19 contain the contents of the 

oop for xor . In this loop, the ret instructions of D will be un-

acked through xor operation with the key. Each ret instruction 

s modified to the undefined instruction ( 0xd65f03c1 ) repeat- 

dly. When L finishes executing, now D’ will start executing. In 

he case of native execution, a stale copy of D in i-cache will ex- 

cute, and the EmuID code will return immediately. On the other 

and, in emulation execution, D’ (or more precisely D't ) will exe- 

ute and get an illegal instruction fault. 

In short, we implemented the detection code that causes differ- 

nt execution results in the ARM native environment and emula- 

ion environment with just one self-modifying code. This code is 
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Table 1 

False-negative test results from 10 0 0 trials of EmuID detection on emulation engines. 

Emulation Engine Device Processor Arch Core Name Cache Line OS False-negative Rate 

DynamoRIO RPI 2 Model B v1.1 armeabi-v7a Cortex-A7 32 Bytes Ubuntu MATE 18.04.2 0% 

DynamoRIO RPI 3 Model B v1.2 arm64-v8a Cortex-A53 64 Bytes Ubuntu MATE 18.04.2 0% 

DynamoRIO Hikey 960 arm64-v8a Cortex A73, Cortex A53 64 Bytes Leuuntu 16.04 0% 

DynamoRIO Juno r0 arm64-v8a Cortex-A57, Cortex-A53 64 Bytes Openembedded 0% 

Valgrind RPI 2 Model B v1.1 armeabi-v7a Cortex-A7 32 Bytes Ubuntu MATE 18.04.2 0% 

Valgrind RPI 3 Model B v1.2 arm64-v8a Cortex-A53 64 Bytes Ubuntu MATE 18.04.2 0% 

Valgrind Hikey 960 arm64-v8a Cortex A73, Cortex A53 64 Bytes Lubuntu 16.04 0% 

Valgrind Juno r0 arm64-v8a Cortex-A57, Cortex-A53 64 Bytes Openembedded 0% 

QEMU-user RPI 2 Model B v1.1 armeabi-v7a Cortex-A7 32 Bytes Ubuntu MATE 18.04.2 0% 

QEMU-user RPI 3 Model B v1.2 arm64-v8a Cortex-A53 64 Bytes Ubuntu MATE 18.04.2 0% 

QEMU-user Hikey 960 arm64-v8a Cortex A73, Cortex A53 64 Bytes Lebuntu 16.04 0% 

QEMU-user Juno r0 arm64-v8a Cortex-A57, Cortex-A53 64 Bytes Openembedded 0% 

QEMU-system-arm RPI 2 Model B v1.1 armeabi-v7a Cortex-A7 32 Bytes Ubuntu MATE 18.04.2 0% 

QEMU-system-arm RPI 3 Model B v1.2 arm64-v8a Cortex-A53 64 Bytes Ubuntu MATE 18.04.2 0% 

QEMU-system-arm Hikey 960 arm64-v8a Cortex A73, Cortex A53 64 Bytes Lebuntu 16.04 0% 

QEMU-system-arm Juno r0 arm64-v8a Cortex-A57, Cortex-A53 64 Bytes Openembedded 0% 

QEMU-user Intel Desktop Intel Coffee Lake Core i9-9900K 64 Bytes Ubuntu 18.04.5 0% 

QEMU-user AMD Desktop AMD Zen 2 Ryzen Threadripper 3990X 64 Bytes Ubuntu 20.04.2 0% 

QEMU-system-arm Intel Desktop Intel Coffee Lake Core i9-9900K 64 Bytes Ubuntu 18.04.5 0% 

QEMU-system-arm AMD Desktop AMD Zen 2 Ryzen Threadripper 3990X 64 Bytes Ubuntu 20.04.2 0% 
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ntended to serve as a proof-of-concept. Fig. 9 was executed in the 

pplication as a shellcode. Fig. 9 is applicable when the cache line 

ize is 64 bytes, but in the case of 32 bytes, the shellcode is larger

han the cache line size and is not loaded in one cache line. For 

his case, if the cache line size is 32 bytes, the thumb mode as- 

embly code of self-modifying code, which performs a similar op- 

ration as the code in Fig. 9 , is executed. In the end, our technique

as applicable to both 32 bytes and 64 bytes without being lim- 

ted by cache line size. 

.2. Evaluation of emulation detection accuracy 

We evaluated the generalizability and accuracy of the 

muID detection method in terms of false-negatives on three 

idely used emulation engines (DynamoRio, Valgrind, and QEMU 

QEMU-user and QEMU-system-arm)) on four ARM-based devices 

ith varying architectures. Especially for QEMU, which provides 

ross-architecture emulation, we additionally tested it on two 

ifferent x86-based devices. 

Table 1 illustrates the result of the experiment. We ran 10 0 0 tri- 

ls for each emulation engine and device combinations. As our re- 

ults illustrate, EmuID was able to detect all tested emulation en- 

ines across four devices without any false-negatives. In addition, 

muID was able to detect emulation engines for ARM running in 

86 architectures without false-negative. 

This experiment proves four aspects of EmuID effectiveness. 

irst, EmuID is 100% accurate in emulation detection. If an emu- 

ation detection scheme has non-zero false-negative, one can sim- 

ly run emulation indefinitely until it fails. Hence, this is a re- 

uired virtue for all emulation detection schemes, and EmuID is 

roved to satisfy the requirement. However, a 100% accurate de- 

ection rate does not necessarily mean that the scheme is robust. 

hat is, if a quick fix to the emulation engine can nullify the 

echanism by which the detection scheme detects the emulation, 

he scheme is not robust. We discuss why mitigating EmuID is 

 daunting challenge for emulation engines in Section 6 . Second, 

muID is implementation-agnostic. EmuID successfully detected 

ll three emulation engines we used in the experiment. This is be- 

ause EmuID exploits the discrepancy between the caveat of the 

RM microarchitecture and the underlying shared principle in soft- 

are emulation implementations. Third, EmuID successfully de- 

ects emulations on both 32-bit and 64-bit devices. There are dif- 

erences between 32-bit and 64-bit, such as the cache line size (32 

ytes vs. 64 bytes) and the instruction set architecture (the em- 
9 
lation engines are compiled to 64-bit executables for 64-bit de- 

ices). However, such factors did not affect the detection accuracy 

f EmuID . Fourth, EmuID is able to detect a cross-architecture em- 

lation engine. Since I-cache and D-cache incoherency is a feature 

f the ARM native environment, this does not occur if the ARM 

inary is emulated for execution on a non-ARM-based architec- 

ure (e.g., x86 architecture). That is, EmuID can detect the cross- 

rchitecture emulation engine by checking that it does not run in 

he ARM native environment. 

.3. Evaluation on real mobile devices 

We conducted another experiment to prove that EmuID also 

as no false-negatives by running it on ARM-based devices with- 

ut emulation. In order to test EmuID on a wide variety of de- 

ices, we opted for the Amazon Device Farm service ( AWS, 2020 ). 

e embedded EmuID code into an app through the Java Native 

nterface (JNI) and ran it on a total of 155 devices (all available de- 

ice types in Amazon Device Farm) in addition to the four devices 

hat we physically own. The reason why we ran such a thorough 

alse-negative test is that there exist many ARM processor imple- 

entations. Also, a non-negligible portion of the processor archi- 

ecture can be modified by the manufacturer due to the licensing 

ractice of the ARM architecture. Fig. 10 a shows the distributions 

f the manufacturer of the Android devices, while Fig. 10 b shows 

he distributions of the installed operating systems on the Android 

evices. 

Table 2 shows our experiment results. Each device is tested 

0 0 0 times with EmuID , and we did not find any false-positive re-

ults. Combined with our results from the experiment against em- 

lation engines, this experiment again shows the accuracy of the 

muID detection method. Fig. 11 shows the time consumption for 

etecting the execution environment. The average time to detect 

s 0.14 ms. This shows that our method can be readily embedded 

nto the software with almost no performance impact. 

. On the difficulty of mitigating EmuID 

The emulation environment detection technique presented in 

his paper uses the hardware feature with differences that oc- 

ur in the native environment but not in the emulation environ- 

ent. The hardware feature is the incoherency between i-cache 

nd d-cache. Our technique identifying the execution environment 

f the running application intentionally causes cache incoherency. 
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Table 2 

False-positive test results from 10 0 0 trials of detection on real devices. 

Vendor Device Model ARM Arch OS False-positive 

v7 v8 Rate 

Raspberry Pi Foundation RPI 2 Model B v1.1 BCM2836 ✔ Ubuntu MATE 18.04.2 0% 

RPI 3 Model B v1.2 BCM2837 ✔ 0% 

Linaro Hikey 960 Kirin 960 ✔ Lebuntu 16.04 0% 

Arm Juno r0 Juno r0 ✔ Openembedded 0% 

Samsung Galaxy Note 9 SM-N960U1 ✔ Android 8.1.0 0% 

Galaxy S9 (Unlocked) SM-G960U1 ✔ Android 8.0.0 0% 

Galaxy S9 + (Unlocked) SM-G965U1 ✔ 0% 

Galaxy Tab S3 9.7” SM-T820 ✔ 0% 

Galaxy Note8 (Unlocked) SM-N950U1 ✔ Android 7.1.1 0% 

Galaxy Note5 (AT&T) SM-N9120A ✔ Android 7 0% 

Galaxy S6 (T-Mobile) SM-G920T ✔ 0% 

Galaxy S6 Edge SM-G925F ✔ 0% 

Galaxy S8 (T-Mobile) SM-G950U ✔ 0% 

Galaxy S8 Unlocked SM-G950U1 ✔ 0% 

Galaxy S8 + (T-Mobile) SM-G955U ✔ 0% 

Galaxy Note5 SM-N920C SM-N920C ✔ Android 6.0.1 0% 

Galaxy S5 (AT&T) SM-G900A ✔ 0% 

Galaxy S5 (Verizon) SM-G900V ✔ 0% 

Galaxy S6 (T-Mobile) SM-G920T ✔ 0% 

Galaxy S6 (Verizon) SM-G920V ✔ 0% 

Galaxy S6 Edge SM-G925F SM-G925F ✔ 0% 

Galaxy S6 SM-G920F SM-G920F ✔ 0% 

Galaxy S7 (AT&T) SM-G930A ✔ 0% 

Galaxy S7 Edge (AT&T) SM-G935A ✔ 0% 

Galaxy S7 Edge SM-G935F SM-G935F ✔ 0% 

Galaxy S7 SM-G930F SM-G930F ✔ 0% 

Galaxy Tab S2 9.7 SM-T813 ✔ 0% 

Galaxy Tab S2 8.0” (WiFi) SM-T713 ✔ 0% 

Galaxy E5 SM-E500H ✔ Android 5.1.1 0% 

Galaxy Grand Prime 4G SM-G531F ✔ 0% 

Galaxy J5 4G SM-J500F ✔ 0% 

Galaxy Note5 (AT&T) SM-N9120A ✔ 0% 

Galaxy Note5 (T-Mobile) SM-N920T ✔ 0% 

Galaxy S6 Edge + (AT&T) SM-G928A ✔ 0% 

Galaxy S6 Edge + 

(T-Mobile) 

SM-G928T ✔ 0% 

Galaxy Tab S2 8.0” (WiFi) SM-T710 ✔ 0% 

Galaxy A5 SM-A500F ✔ Android 5.0.2 0% 

Galaxy S6 (Verizon) SM-G920V ✔ 0% 

Galaxy S6 Edge SM-G925F ✔ 0% 

Galaxy S6 Edge (Verizon) SM-G925V ✔ 0% 

Galaxy Tab 4 10.1” (WiFi) SM-T530NU ✔ 0% 

Galaxy Note 4 (AT&T) SM-N910A ✔ Android 5.0.1 0% 

Galaxy Note 4 (Verizon) SM-N910V ✔ 0% 

Galaxy Note 4 SM-N910H SM-N910H ✔ 0% 

Galaxy S4 (AT&T) SGH-I337 ✔ 0% 

Galaxy S4 (Verizon) SCH-I545 ✔ 0% 

Galaxy S4(Unlocked) GT-I9500 ✔ 0% 

Galaxy Note 3 (Sprint) SM-N900P ✔ Android 5 0% 

Galaxy Note 3 (T-Mobile) SM-N900T ✔ 0% 

Galaxy E7 SM-E7000 ✔ Android 4.4.4 0% 

Galaxy Grand Neo Plus GT-I9060I ✔ 0% 

Galaxy Grand Prime Duos SM-G530H ✔ 0% 

Galaxy J1 Ace SM-J110H ✔ 0% 

Galaxy J1 Duos SM-J100H ✔ 0% 

Galaxy Note 3 (AT&T) SM-N900A ✔ 0% 

Galaxy Note 3 (Verizon) SM-N900V ✔ 0% 

Galaxy Note 4 (AT&T) SM-N910A ✔ 0% 

Galaxy Note 4 (Sprint) SM-N910P ✔ 0% 

Galaxy Note 4 (T-Mobile) SM-N910T ✔ 0% 

Galaxy Note 4 (Verizon) SM-N910V ✔ 0% 

Galaxy S DUOS 3 SM-G316HU ✔ 0% 

Galaxy S4 (AT&T) SGH-I337 ✔ 0% 

Galaxy S4 (T-Mobile) SGH-M919 ✔ 0% 

Galaxy S5 (AT&T) SM-G900A ✔ 0% 

Galaxy S5 (Verizon) SM-G900V ✔ 0% 

Galaxy Tab 3 7.0”

(T-Mobile) 

SM-T217T ✔ 0% 

Galaxy Grand 2 SM-G7102 ✔ Android 4.4.2 0% 

Galaxy Light (MetroPCS) SGH-T399N ✔ 0% 

Galaxy Note 2 (AT&T) SGH-I317 ✔ 0% 

Galaxy Note 2 (Verizon) SCH-I605 ✔ 0% 

( continued on next page ) 
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Table 2 ( continued ) 

Vendor Device Model ARM Arch OS False-positive 

v7 v8 Rate 

Galaxy Note 3 (AT&T) SM-N900A ✔ 0% 

Galaxy S3 (Verizon) SCH-I535 ✔ 0% 

Galaxy S4 (AT&T) SGH-I337 ✔ 0% 

Galaxy S4 (US Cellular) SCH-R970 ✔ 0% 

Galaxy S4 (Verizon) SCH-I545 ✔ 0% 

Galaxy S4 Active (AT&T) SGH-I537 ✔ 0% 

Galaxy S4 mini (Verizon) SCH-I435 ✔ 0% 

Galaxy S4 Mini GT-I9195 GT-I9195 ✔ 0% 

Galaxy S5 (AT&T) SM-G900A ✔ 0% 

Galaxy S5 (T-Mobile) SM-G900T ✔ 0% 

Galaxy S5 Active (AT&T) SM-G870A ✔ 0% 

Galaxy Tab 4 10.1” (WiFi) SM-T530NU ✔ 0% 

Galaxy Tab 4 7.0” (WiFi) SM-T230NU ✔ 0% 

Galaxy Note 2 (AT&T) SGH-I317 ✔ Android 4.3 0% 

Galaxy S3 (AT&T) SGH-I747 ✔ 0% 

Galaxy S3 (T-Mobile) SGH-T999 ✔ 0% 

Galaxy S3 (Verizon) SCH-I535 ✔ 0% 

Galaxy S3 LTE (T-Mobile) SGH-T999L ✔ 0% 

Nexus 10 (WiFi) GT-P8110 ✔ 0% 

Galaxy Tab 3 Lite 7.0”

(WiFi) 

SM-T110 ✔ Android 4.2.2 0% 

LG G7 ThinQ LM-G710 ✔ Android 8.0.0 0% 

LG V20 (AT&T) LG-H910 ✔ Android 7 0% 

V20 (T-Mobile) LG-H918 ✔ 0% 

V20 (Verizon) VS995 ✔ 0% 

G5 (T-Mobile) LG-H830 ✔ Android 6.0.1 0% 

Nexus 5 D820 ✔ Android 6 0% 

G3 (AT&T) D850 ✔ Android 5.0.1 0% 

Nexus 5 D820 ✔ 0% 

Nexus 4 E960 ✔ Android 4.4.3 0% 

G Pad 7.0 (AT&T) V410 ✔ Android 4.4.2 0% 

G2 (AT&T) D800 ✔ 0% 

G2 (T-Mobile) D801 ✔ 0% 

G3 (AT&T) D850 ✔ 0% 

G3 (T-Mobile) D851 ✔ 0% 

G3 (Verizon) VS985 ✔ 0% 

Nexus 5 D820 ✔ 0% 

Optimus L70 (MetroPCS) MS323 ✔ 0% 

G Flex (AT&T) D950 ✔ 0% 

Motorola Moto G 4 Moto G (4) ✔ Android 7 0% 

Nexus 6 XT1103 ✔ 0% 

Moto G - 2nd Gen XT1064 ✔ Android 6 0% 

Moto G - 3rd Gen MotoG3 ✔ 0% 

Nexus 6 XT1103 ✔ 0% 

DROID Turbo 2 (Verizon) XT1585 ✔ Android 5.1.1 0% 

DROID Turbo (Verizon) XT1254 ✔ Android 5.1 0% 

Moto E - 2nd Gen XT1511 ✔ 0% 

Moto X - 2nd Gen 

(Verizon) 

XT1096 ✔ 0% 

Nexus 6 XT1103 ✔ 0% 

DROID Ultra (Verizon) XT1080 ✔ Android 4.4.4 0% 

Moto G (AT&T) XT1045 ✔ 0% 

DROID RAZR HD (Verizon) XT926 ✔ Android 4.4.2 0% 

DROID RAZR M (Verizon) XT907 ✔ 0% 

HTC U11 HTC U11 ✔ Android 7.1.1 0% 

One A9 (Unlocked) HTCOne A9 ✔ Android 6.0.1 0% 

One M9 (AT&T) 6735A ✔ Android 5.0.2 0% 

One M9 (Verizon) HTC6535LVW ✔ 0% 

One M8 (AT&T) 6268A ✔ Android 4.4.4 0% 

One M8 (Verizon) HTC6525LVW ✔ 0% 

One M7 (AT&T) 6096A ✔ Android 4.4.2 0% 

One M8 (AT&T) 6268A ✔ 0% 

One M8 (Verizon) HTC6525LVW ✔ 0% 

Google Pixel 2 Google Pixel 

2 

✔ Android 9 0% 

Pixel 2 XL Google Pixel 

2 XL 

✔ 0% 

Pixel 2 Google Pixel 

2 

✔ Android 8.1.0 0% 

Pixel Pixel ✔ Android 8.0.0 0% 

Pixel XL Pixel XL ✔ 0% 

( continued on next page ) 

11 



Y. Choi, Y. Jeong, D. Jang et al. Computers & Security 113 (2022) 102569 

Table 2 ( continued ) 

Vendor Device Model ARM Arch OS False-positive 

v7 v8 Rate 

Pixel 2 Google Pixel 

2 

✔ 0% 

Pixel 2 XL Google Pixel 

2 XL 

✔ 0% 

Pixel Pixel ✔ Android 7.1.2 0% 

Pixel XL Pixel XL ✔ 0% 

ASUS Nexus 7 - 2nd Gen (WiFi) ME571K ✔ Android 6 0% 

Nexus 7 - 2nd Gen (WiFi) ME571K ✔ Android 5.0.1 0% 

Nexus 7 - 2nd Gen (WiFi) ME571K ✔ Android 4.4.4 0% 

Nexus 7 - 2nd Gen (WiFi) ME571K ✔ Android 4.4.2 0% 

Nexus 7 - 2nd Gen (WiFi) ME571K ✔ Android 4.3.1 0% 

Nexus 7 - 1st Gen (WiFi) ME370T ✔ Android 4.2.1 0% 

Nexus 7 - 1st Gen (WiFi) ME370T ✔ Android 4.2 0% 

Amazon Fire HD 7 (2014) SQ46CW ✔ Android 4.4.3 0% 

Kindle Fire HDX 7 (2013) C9R6QM ✔ 0% 

Fire Phone SD4930UR ✔ Android 4.2.2 0% 

Huawei M8 HUAWEI 

NXT-L29 

✔ Android 6 0% 

P9 EVA-L09 ✔ 0% 

Ascend Mate 7 MT7-L09 ✔ Android 4.4.2 0% 

Sony Xperia Z4 Tablet SGP712 ✔ Android 5.0.2 0% 

Xperia Z3 D6616 ✔ Android 4.4.4 0% 

Xperia Z1 Compact D5503 ✔ Android 4.3 0% 

Intex Aqua Y2 Pro Aqua Y2 Pro ✔ Android 4.4.2 0% 

Oppo Find 7a X9006 ✔ Android 4.3 0% 

Wiko Rainbow 4G RAINBOW 4G ✔ Android 4.4.2 0% 

Fig. 10. Manufacturer and OS version distributions of tested devices. 
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elf-modifying code is suitable as the code that occurs cache in- 

oherency. When our detection technique utilizing self-modifying 

ode works, abnormal execution results due to cache incoherency 

ccur in the native environment, and normal execution occurs 

ithout cache incoherency in the emulation environment. Since 

hese results are based on architectural features, it is difficult to be 

ypassed with simple modifications, unlike heuristic techniques. In 

his section, we discsuss why it is non-trivial to amend the emula- 

ion engines to mitigate EmuID through a few plausible but infea- 

ible theoretic mitigation methods. 

.1. Detecting and nullifying EmuID through manual analysis 

In EmuID deployment scenarios, we assume that EmuID will 

ften be used in conjunction with software obfuscation tech- 

iques ( Themida, 2021 ). The program code itself is encrypted or 

bfuscated in arbitrary ways and only reveals its behavior during 

untime. As such, EmuID will be hidden among the already obfus- 
12 
ated program code. In addition, our proof-concept shown in Fig. 9 , 

an be arbitrarily transformed such that it evades signatures- 

ased detection mechanisms as often seen in polymorphic mal- 

are. These effort s can subst antially raise the bar f or the reverse 

ngineers since obfuscated programs often require dynamic analy- 

is, and EmuID makes such a method rather difficult. 

However, skilled reverse engineers can eventually disarm 

muID code hidden in the program with sufficient effort s, as 

ith any other anti-emulation features. With the knowledge of the 

muID ’s mechanism, the reverse engineers can locate and elimi- 

ate EmuID code from the program. Hence, EmuID cannot provide 

eterministic prevention of manual analysis but rather brings addi- 

ional hurdles in the analysis process. Nevertheless, EmuID lever- 

ges the unique characteristics of the ARM architecture. Therefore, 

undamentally mitigating EmuID through rectifying the emulation 

ngines would be rather difficult unlike the existing signature- 

ased emulation detection schemes ( Falcón and Riva, 2012; Hron 

nd Jermář, 2014; Jang et al., 2019; Jing et al., 2014; Kirsch et al., 
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Fig. 11. Time consumption for detection on 155 real android devices of Amazon 

Device Farm. The average time to detect is 0.14 ms. The shortest time is 0.012 ms, 

and the longest time is 1.224 ms. 
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018; Li and Li, 2014; Petsas et al., 2014; Polino et al., 2017; Raf- 

etseder et al., 2007; Sun et al., 2016 ). We will discuss this point

ater in this section ( Sections 6.3 and 6.4 ). 

.2. Compatibility issues with W ̂ X Policy 

EmuID has a reliance on the self-modifying code and hence vi- 

lates the W ̂ X policy. Also, as we assume that software obfusca- 

ion methods are used in combination, violation of the W ̂ X policy 

s inevitable. 

When EmuID -protected program is run inside emulation en- 

ironments for the purpose of analysis, the violation of the W ̂ X 

olicy is usually tolerated. This is because the emulation software 

hemselves require JIT compilation to translate or instrument the 

mulated software, and this means that system-wide enforcement 

f W ̂ X is infeasible. The emulation engines can also enforce the 

 ̂ X policy during emulation. However, many obfuscated or pro- 

ected software does employ self-modifying code, and the reverse 

ngineer has no option but to allow such behavior. 

However, running EmuID -protected program in native exe- 

ution environments for benign use can bring compatibility is- 

ues. Some modern systems may strictly enforce the W ̂ X policy, 

hereby rendering EmuID -protected program unable to run on the 

ystem. This is a limitation of EmuID as well as many software 

bfuscation methods that include self-modifying code ( Themida, 

021; upx, 2021 ). 

.3. Modifying code translation granularity 

Altering the translation granularity of software emulation en- 

ines may be considered a possible mitigation for the EmuID de- 

ection method. Since EmuID takes advantage of the artifact that 

appens during the code translation process that copies and trans- 

ates the next basic block to be executed. However, a close look 

nto the mechanism by which the translation code cache is main- 

ained reveals the tentative mitigation approach’s inapplicability. 

n emulation engine has to meet the following requirements to 

imic the architectural characteristics that appear due to the 

ache lines: 

One tentative solution would be to redesign software emula- 

ion engines such that it fetches code at a cache-line granularity. 

his solution introduces a few non-trivial problems. First, this re- 

uires heavy modifications to the emulation engines at the fun- 

amental level. Emulation engines ( Bellard, 2005; Bruening et al., 

003 ), simply assume basic block granularity in all components of 

ts implementation. This is simply because the basic block by ba- 

ic block translation is the most efficient and intuitive. Therefore, 
13 
hanging the translation granularity might mean reconsidering the 

mulation design from scratch. 

Second, this solution would introduce significant performance 

verhead. If a single basic block spans multiple cache lines, the 

asic block would have to be split into multiple code cache. This 

ould increase the amount of control flow transfers among the 

ode caches, hurting the cache locality. When multiple basic blocks 

eside in the same cache line, the emulation engine must perform 

ranslation of all the basics blocks that are not necessarily going 

o be executed. Overall, this tentative solution would introduce a 

erformance overhead as well as software complexity. 

Third, modifying translation code cache generation and main- 

enance for EmuID mitigation would also render existing code 

ache optimization incompatible. For instance, basic block linking 

nd trace caching must be either discarded or redesigned for the 

odification. Basic block linking stitches two basic blocks together 

o avoid a call to emulation dispatcher. Furthermore, frequently ex- 

cuted sequences of basic blocks are chained into a trace for ad- 

itional performance boost ( Dynamorio system details, 2020 ). At- 

empts to change the granularity of code fetch and translate are 

ikely to conflict with these general optimizations strategies. 

For the reasons we explained above, we argue that changing 

he translation granularity is not realistic mitigation for EmuID . 
n all, modifying the translation granularity solely to mitigate 

muID might be possible. However, the amount of effort that is 

equired and mounting performance problems make the approach 

nfeasible. 

.4. Emulating native cache behavior 

A robust mitigation to EmuID and its variants would be to 

odify the emulation engine or implement a set of translation 

ules to maintain a virtual set of L1 caches throughout the pro- 

ram emulation. First and foremost, the emulation engine must be 

onitoring all changes to executable pages. To achieve this goal, 

he engine must watch the page permission changes as well as the 

reation of new pages that introduce RWX pages. Then, it includes 

racing of all memory accesses, cache-flushing instructions, and a 

ative-like cache eviction policy. This is because EmuID is crafted 

o leave a stale value only in the i-cache; the only way to capture 

he stale value or incoherency is to closly follow all possible cache 

ontent changes to calculate the current i-cache content of the cur- 

ently executing cache lines. 

We found that implementing the above mitigation would be a 

aunting challenge to emulation engine developers. Cache profiling 

hrough emulation engines havs been developed and used in prac- 

ice ( Cache simulator, 2020 ). However, they currently only report 

ache hit rates for the caches and the addresses of the cache lines, 

ut not the contents of the cache lines. For detection of EmuID , 
he cache profiling tool must be modified to also track the contents 

f the cache lines. More importantly, the performance overhead of 

he tool rules out the cache profiling tool as possible mitigation 

or EmuID . The documentation of the profiling tool explains that 

he tool is too slow to profile an entire application since the per- 

ormance overhead is about 500 times that of the native execution 

 Cache simulator, 2020 ). Therefore, mitigating EmuID through an 

lways maintained virtual cache is also not feasible. 

. Conclusion 

In this paper, we presented EmuID , which takes advantage of 

he characteristics of the ARM architecture’s cache behavior to de- 

ect the presence of emulation. We provided an in-depth analysis 

f our detection method and how it causes the native and em- 

lated execution environments to have different cache behaviors, 

hich is utilized for the detection method. We showed that our 
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ethod is accurate and agnostic to implementations of emulators 

y testing it on well-known software emulation engines such as 

BI (Valgrind, DynamoRIO) for the ARM architecture and emulator 

QEMU) for the ARM architecture and x86 architecture, and also 

onfirmed that it has no false positives on 155 ARM-based devices. 
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ppendix A. First Appendix 

The EmuID code for 64-bit ARM architecture is illustrated in 

ig. 9 , but shell code of this is longer then the cache line size in

2-bit ARM architecture. Thus, we implemented the EmuID code 

or 32-bit ARM architecture using Thumb instruction set that is 

onsists of 16-bit instructions. Fig. A.1 is EmuID code written for 

he 32-bit ARM architecture. 

The code from line 7 to line 21 is the launcher ( L ), and from

ine 31 is the detector ( D ). The branch instruction in line 21 makes

he L and the D be different basic blocks. The L first change the 

nstruction mode from the standard ARM to Thumb (line 7–8 in 
Fig. A.1. Self-Modifying code of EmuID for 32-bit ARM architecture. 
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H
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K
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14 
ig. A.1 ). After then, the L sets the registers in line 12–14. The reg-

ster r0 is used as a Pointer to Code Position. The register r1 and 

2 are used as the temp registers. The register r3 is used as the 

or key and the loop counter. After the register values are set, the 

 modifies the D , which has initially the bx lr instruction. Line 

5–21 contain the contents of the loop for xor. In this loop, the 

x lr instructions is of D will be unpacked through xor operation 

ith the key. The bx lr instruction is modified to mov r0, sp 
nstruction. When L finishes executing, now D’ will start execut- 

ng. In case of native execution, a stale copy of D in i-cache will 

xecute and EmuID code will return immediately with changing 

nstruction mode to standard ARM. On the other hand, in emula- 

ion execution, D’(or more precisely Dt's ) will execute undefined 

nstruction after executing mov r0, sp and get a illegal instruc- 

ion fault. 
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