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ABSTRACT ACM Reference Format:

Fuzzing is a practical technique to automatically find vulnerabilities
in software. It is well-suited to running at scale with distributed
computing platforms thanks to its parallelizability. Therefore, indi-
vidual researchers and companies typically setup fuzzing platforms
on multiple servers and run fuzzers in parallel. However, as such
resources are private, they suffer from financial and physical limits.
In this paper, we propose FuzziINc@HOME; the first public collabo-
rative fuzzing network, based on heterogeneous machines owned
by potentially untrusted users. Using our system, multiple organi-
zations (or individuals) can easily collaborate to fuzz a software of
common interest in an efficient way. One can participate and earn
economic benefits if the fuzzing network is tied to a bug-bounty
program, or simply donate spare computing power as a volunteer.

If the network compensates collaborators, system fairness be-
comes an issue. In this light, we devise a system to make the fuzzing
results verifiable and devise cheat detection techniques to ensure
integrity and fairness in collaboration. In terms of performance,
we devise a technique to effectively sync the global coverage state,
hence minimizing the overhead for verifying computation results.
Finally, to increase participation, Fuzzing@HOME uses WebAssem-
bly to run fuzzers inside the web browser engine, allowing anyone
to instantly join a fuzzing network with a single click on their mo-
bile phone, tablet, or any modern computing device. To evaluate
our system, we bootstrapped FuzziINc@HoME with 72 open-source
projects and ran experimental fuzzing networks for 330 days with
826 collaborators as beta testers.

CCS CONCEPTS

« Security and privacy — Software and application security;
« Computing methodologies — Distributed computing method-
ologies.
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1 INTRODUCTION

Fuzzing repeatedly searches a program’s code paths using genetic
algorithms. Because the repetition is parallelizable, increasing the
rate of execution tends to yield more findings in a shorter period. To
maximize the number of executions, fuzzers typically support paral-
lel execution [55, 56], across multiple cores and distributed fuzzing
infrastructure span multiple machines. Google’s ClusterFuzz [24]
project, for example, distributes fuzzing tasks among thousands
of virtual machines [44], which collectively fuzz a vast amount of
code. Presently, distributed fuzzing platforms are limited by the
amount of computing power owned by a single entity.

In this paper, we present FuzzING@HoME— a collaborative public
network for fuzzing. While existing distributed fuzzing projects [24]
are built on top of trusted nodes, FuzzING@HOME aims to utilize
public computation nodes owned by multiple entities, which can be
potentially hostile. If the network participants are anonymous, they
can potentially break the fairness/security of the system!. This is
analogous to other collaborative distributed computing works that
discuss fairness and cheating issues [15, 22].

Existing solutions to prevent cheating in collaborative computing
rely on the fact that their computations are purely deterministic
and mathematical (e.g., AES decryption). Therefore, a proof-of-
work (PoW) model can effectively check if participating nodes are
collaborating in a fair way. Unfortunately, computations in fuzzing
targets are arbitrary (e.g., audio stream parsing, data sorting, string
manipulation); hence it is impossible to apply existing proof-of-
work.

To address this issue, FuzzING@HoME introduces Proof-of-
Fuzzing-Work (PoFW), which is a variation of PoW tailored for
distributed fuzzing. As in PoW, a high-level idea of PoFW is giving a
network collaborator a challenge to prove if they are working as ex-
pected. This challenge is often based on brute-forcing cryptographic

IResults in fuzzing could be tied to money due to bug-bounty programs; thus raising
fairness/cheating issues. Our threat model assumes clients are untrusted but servers
are.
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hashes (e.g., Bitcoin) in conventional systems. Unfortunately, such
an approach is inapplicable in FuzziINg@HoME because there are
too many forms of computations in fuzzing; and some of them do
not even produce any measurable output (e.g., void function).

As a solution, we devise a concept called an execution hash,
which is a hash of the code coverage map of program execution.
However, such an alternative needs to consider several non-trivial
properties, such as coverage map saturation, non-determinism in
binary execution, and so forth; which we investigate in this paper.

FuzziNG@HOME also aims to be a large-scale distributed fuzzing
platform that accepts heterogeneous clients as a computation re-
source. To this end, we use WebAssembly (WASM) to run fuzzers in-
side web browsers. We ported 30 open source projects from OSSFuzz
to run with WASM. As WASM-fuzzers run inside a web browser,
a single click/tap on a URL link allows any user to participate in
Fuzzincg@HoME instantly. Additionally, to better de-duplicate com-
putation across participants, we propose the idea of global coverage
synchronization to increase the overall efficiency of the distributed
system.

For evaluation, we bootstrap FuzziNg@HOME in a private lab en-
vironment and also deploy it as an experimental real-world service
to limited beta testers for 330 days. The beta service is based on 72
fuzzing pools (42 Linux based, 30 WASM based) powered by 826 col-
laborators. (77.3% users participated via their mobile phones/tablets
using WASM). As a result, Fuzzina@HoME found 37 bugs, which
we reported to the project maintainers.

In summary, our key contributions are as follows:

e We design and implement the first public and collaborative
fuzzing network, FuzziNng@HoME.

e We solve security challenges stemming from using untrusted
machines.

e We introduce techniques to minimize the performance cost
of FuzzING@HOME’s security measures.

e We use WebAssembly to include a wide range of heteroge-
neous fuzzing clients.

e We deploy FuzzING@HOME as an experimental beta service
and gather live data for our study.

2 ASSUMPTIONS AND GOALS
2.1 Threat Model and Assumptions

Unlike previous networked fuzzing infrastructures [18, 19, 24, 33,
44], which assume that all nodes are trustworthy, we account for
nodes that are dishonest or even malicious. Also, as our trusted
computing base includes a centralized control server, malicious
denial-of-service attempts are also threats that we must address.
In our threat model, the control servers are trustworthy entities.
This setup is well aligned with real bug-finding services such as
bug bounty programs [5, 9, 23, 26, 58]; a security researcher, who
reports a vulnerability, trusts the integrity of these programs.

2.2 Goals

Scalability. Fuzzinag@HoME’s main goal is to build a large-scale
public infrastructure for collaborative fuzzing. Thus, it is important
to design all tasks to be independent and asynchronous, avoiding
a single performance bottleneck in critical paths. To achieve this,
FuzziING@HoOME broadcasts the global state to participants and
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enables them to verify new findings locally. In particular, a node
locally checks the novelty of its report (e.g., coverage) using its
synchronized global view before submitting it to the control server
for final validation. Thus, if another node has already reported the
same discovery (thus registered as global knowledge), the current
node discards its finding to avoid duplicating the control server’s
verification work. (§4.4).

Trustworthiness. FuzzING@HOME must assume network partici-
pants could be hostile. Specifically, we theorize two attack types:
D a greedy node that claims rewards without actually working
(goofing off), @ a dishonest node that performs work but hides
crashes and new corpus entries (stashing). Given that the attacker
in our model physically owns the machine, our primary goal is to
design the system to be less beneficial to malicious actors than to
honest users.

Fairness. To share beneficial outcomes equitably, FuzziING@HoME
needs to fairly evaluate a user’s contribution to the network, con-
sidering multiple factors such as the difficulty of bug finding, the
amount of contributed coverage information, etc. Unlike mathe-
matical puzzles (e.g., PoW in cryptocurrencies), measuring and
controlling the difficulty of fuzzing is fundamentally more challeng-
ing because of the underlying dynamics in finding new bugs. In
general, the outputs from fuzzing (i.e., finding interesting new test
cases or crashes) tend to plateau and become more challenging to
find over time. However, the discovery of a new test case can also
create a sudden, temporary drop in difficulty. This is because a new
test case might pass some complicated constraints on an interesting
code path and spark an influx of new crashes and test cases. To
take the varying difficulty into account, FuzzING@HOME compen-
sates new discovery with reward proportionate to the entire pool’s
computing effort consumed for the finding. As a result, if a crash
was discovered with a small amount of fuzzing, its compensation is
low; and vice versa (§3.5).

3 SYSTEM DESIGN
3.1 Infrastructure

Figure 1 depicts FuzzING@HoOME’ infrastructure, consisting of two
main components, a trusted central authority referred to as the
control server and group of untrusted fuzzing nodes. This section
explains the roles of these components and their interaction in
FuzzING@HOME.

Fuzzing Node. A fuzzing node is an individual entity that runs a
fuzzer to provide computation power. Fuzzing nodes are grouped
into fuzzing pools—a set of nodes targeting the same application.
Using Docker or Web-Assembly, a unified runtime environment
is used by all nodes and a select set of parameters (fuzzing seeds,
coverage information, etc) are provided. The node then begins
fuzzing the target application, starting with provided seeds and a
hash-challenge given from the control server to prove the fuzzing
work. Once a node finds a solution (Proof-of-Fuzzing-Work), control
server can verify that the node correctly performed fuzzing as told.
We call this request-response event a fuzzing transaction (i.e., a
control server requests a fuzzing transaction to a participant node,
and the participant responds to it).



Fuzzing@Home: Distributed Fuzzing on Untrusted Heterogeneous Clients

i ?ﬁ?Fuzzing Pool !

RAID 2022, October 26-28, 2022, Limassol, Cyprus

% Fuzzing Pool Control Server

p
~

—@ users | ;
—@ user2 ! :

_® User3 ; ,:” @ ()
—@ User4 ' i @ ® Run Fuzzer

{ Heterogeneous -
H T

| Fuzzing Nodes <

{ 3\

—@ User5 ;;»\_ . @ ®

. @Selup Environment *

IA\

Transactio

\ Manager

AY @ Send Testcase
h

Corpus
Manager

i

Verifier

\

h

1@ Report Results ?’-‘1:

_
|

“ #l é_lf—l @

Verification

Coverage/Crash
Verification

Figure 1: Overview of FuzzIN@HoME infrastructure from a distributed fuzzing perspective. Fuzzing pools are orchestrated with a control
server to distribute work and verify fuzzing results. Transaction manager handles seed selection and work load distribution. Report verifier
validates results from fuzzing nodes and updates global corpus. Corpus manager minimizes fuzzing corpus and optimizes fuzzing seeds.

Control Server. The control server (trusted entity) orchestrates
and controls all the fuzzing nodes within a single pool. This orches-
tration boils down to three key components:

e Distributing work load efficiently to avoid duplication (Trans-

action Manager).
o Verifying results and updating global information (Report
Verifier).

e Cleaning up old/duplicated results (Corpus Manager).
To begin a fuzzing transaction, the control server selects an un-
explored range of seed numbers for input space, initial inputs for
mutation, and challenge execution-hash as a puzzle; a seed number
(not a fuzzing seed corpus) is an integer that affects the input muta-
tion algorithm. To solve the puzzle most cheaply, a node honestly
executes the given fuzzer with the given parameters, then finds
a test case to serve as a proof-of-fuzzing work. While solving the
puzzle, a node might additionally discover interesting test cases
that expand previous code coverage or that cause new crashes. If a
test case expands the code coverage globally for the entire fuzzing
pool perspective, the control server accepts it (and optionally com-
pensates the user) as a discovery and adds it to the global test case
storage.

3.2 Proof-of-Fuzzing-Work (PoFW)

FuzziING@HOME aims to constantly provide baseline reward points
to fuzzing nodes in return for invested computing power, regardless
of their discovery results. This acts as a motivator for users to join
FuzziING@HoME even if their individual chances of finding a crash
is limited. In combination with our threat model of accounting
for malicious nodes, this reward mechanism opens up a potential
problem. We have to verify that nodes are actually running the
given fuzzer and not claiming the associated reward while skipping
the required computation (referred to as goofing attack).

One way to prevent such goofing attack is using Proof-of-Work
(PoW). However, because computation in fuzzing target could be
arbitrary; conventional PoW mechanisms such as crypto-operation
challenge are incompatible. To solve this issue, FuzzING@HOME
introduces Proof-of-Fuzzing-Work (PoFW), which is similar to ex-
isting Proof-of-Work (PoW) mechanisms [28, 29, 36] used in cryp-
tocurrencies but applicable to arbitrary computation.

The idea of PoFW follows these high-level steps: D the con-
trol server randomly picks a fuzzing seed number and an initial
input from corpus. @ the control server generates execution hash
by running the fuzzer with these settings; the execution hash is a
cryptographic hash of code coverage information (e.g., data structure
such as coverage map, inline counter array) achieved by running the
fuzzer. @ the control server challenges a node to find the corre-
sponding seed number that results the same hash as a puzzle with
some hints to adjust difficulty, and finally @ the node exhaustively
searches the answer among the given range of seed numbers. If the
node finds the answer, the control server verifies its correctness
within 0(1) time/memory complexity. It is possible for a node to
try to skip some of the search space and still luckily find the an-
swer in a smaller time frame. If this strategy works consistently, the
challenge-solving will become adjusted accordingly, but if it doesn’t
then the attacker will have to do an exhaustive search. These steps
are depicted in Figure 2.

One question in this design is the uniformity of these execution
hashes. As execution hash is based on code coverage, the crypto-
graphical properties of hashes (e.g., low collision rate) becomes
questionable. In the worst case, say a program with two branches,
PoFW mechanism would be impractical because an attacker could
forge the answer and still be validated as legit node. To investigate
this issue, we conduct experiments based on our PoOFW implemen-
tation and assess the practicality in §5. Our experiment indicates
that the majority of popular open-source applications (e.g., libpcap,
zlib, etc) have sufficient entropy to approximate its code coverage
information as a proper PoOFW challenge for our system.

3.3 Global Coverage Synchronization

In addition to PoOFW mechanism, FuzzING@HOME also validates
discovery report for finding new code paths and crashes. Unlike
PoFW reports, the control server cannot anticipate how many dis-
coveries nodes will report in a given time. From the development
of our prototype, we observed that fuzzing nodes in the early phase
often report duplicate findings in bursts, yet they seem unique from
each node’s perspective. For example, two nodes might report a
test case that results in new code coverage from their local perspec-
tive, when in reality, it results in the same coverage in the global
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scope. Thus, overly frequent/massive duplicate reports can happen;
inducing a performance bottleneck in control server.

To reduce the control server’s verification overhead for dupli-
cate discoveries, FuzzING@HOME synchronizes global coverage
data (e.g., entire coverage history merged/accumulated in the pool)
with participating fuzzing nodes. This allows each fuzzing node
to determine locally whether a newly found discovery is worth
reporting from a global perspective. In other words, promptly sync-
ing global coverage information across fuzzing nodes avoids du-
plicating reports and helps Fuzzinc@HOME to better scale, as de-
picted in Figure 3. Similarly, we also synchronize fingerprints of
reported/verified crashes to allow client nodes to perform crash
de-duplication on their end.

3.4 Stashing

A node could participate in FuzziING@HoME, gaining PoFW re-
wards through honest computing work, while withholding any dis-
covered bugs. The attacker could then potentially try to weaponize
or market these bugs themselves (e.g., claim a bug bounty). This
attack is subtle and difficult to detect. One fundamental approach
to stop stashing is to use a hardware-based trusted execution envi-
ronment (TEE) to enforce the intended execution (e.g., reporting
every crash). Unfortunately, hardware-based TEEs often require a
specific processor model (e.g., Intel Skylake for SGX) and introduce
significant deployment cost [43] to port fuzzers.

Another method is to detect stashing from a node’s reporting
behavior; if FuzziINc@HoME knows that a particular transaction
should crash a program, it can check a node’s honesty by observing
whether it reports the expected crash. For this purpose, we might
inject fake bugs that crash an application; however, existing bug
injection techniques [14, 42] have signatures for injected bugs,
allowing an attacker to recognize them. For example, LAVA [14], one
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Figure 3: Global coverage synchronization in Fuzzinc @HoME. For
each transaction, the client downloads the pool’s global maximum
coverage information. Every time a node locally discovers a new
coverage expanding input, it can locally verify its finding against the
pool’s. As a result, a significant amount of unnecessary verification
work is avoided.

of the most famous bug injection tools, uses a specialized function,
lava_get(), for introducing bugs. Moreover, with access to the
original application version (e.g., open-source software), any bug
injection technique is pointless; an attacker can distinguish fake
bugs via differential testing.

Although stashing is hard to prevent systematically, we can dis-
courages stashing economically with a simple first-come-first-serve
compensation policy. We observe that because a nodes’ maximum
code coverage tends to grow together as they share seed corpus;
once one node discovers a crash, another node that shares the cor-
pus is likely to find the same crash soon. We note that this does
not imply the whole concurrent fuzzing endeavor is redundant.
In FuzziING@HOME, all nodes independently struggle to find new
code paths; but, as they share previously discovered paths via accu-
mulated seeds, global coverage information; the redundancy only
applies for finding new path (i.e., all miners mining new block in
block chain; versus, re-constructing entire block-chain), not the
old paths. This tendency is discussed in a recent work on the em-
pirical laws of fuzzing [6]. Crash discovery logs (e.g., clamav) in
our evaluation data set also support this observation Table 6. In
conclusion, if an honest node participating in the network (sharing
seeds) suddenly attempts to withhold a discovery while collaborat-
ing with others, the discovery result will likely be outdated soon
and other collaborator will be compensated. One might worry our
global state synchronization, which reduces duplicate discovery,
contradicts this claim. To clarify, we emphasize that our global
coverage synchronization suppresses nodes from reporting the du-
plicate discovery, not finding them in the first place.

3.5 Rewards

If FuzzING@HoME is tied to a bug-bounty program, reward-
ing policy matters a lot. The experimental beta platform for
FuzziIna@HoME implements rewards with virtual points based
on the amount of contributions in three folds: (i) solving PoFW
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puzzles, (ii) reporting globally new code coverage, and (iii) re-
porting previously unseen crashes. In the following, we discuss
FuzzING@HOME’s reward system.

PoFW-based reward. A simple way to distribute rewards in
FuzziING@HOME is based on PoFW (see §3.2). If a participant reports
correct POFW to a control server, a reward is given accordingly. Re-
wards based on PoFW will equally and steadily distribute benefits
to participants, and the reward amount is easily calculable based
on the computing power (e.g., 10 PoOFWs per hour).

Discovery-based reward. FuzzING@HOME can also provide re-
wards for submitting a test case that leads to the pool’s coverage
expanding or the program crashing. If the participants actively
seek to discover a promising test case on their own, on top of the
given system (given fuzzer, seed inputs, etc); FuzzING@HOME can
become a competitive fuzzing system, which motivates users to
innovate on fuzzing by compensating them for contribution.

For crashes, it is vital to de-duplicate them without false positives
to prevent malicious users from unfairly gaining rewards. Currently,
FuzziING@HOME uses AddressSanitizer reports for de-duplication,
similar to ClusterFuzz [24] but with a stricter configuration focusing
on reducing false positives (i.e., different crashes might be consid-
ered the same, but not vice versa). We believe that more advanced
techniques for crash de-duplication could be applied [34, 52, 54]
but we leave this as future work.

To determine an appropriate reward amount, FuzzING@HOME
uses a dynamic difficulty policy. Similar to conventional lottery
systems like the Powerball [31], FuzzING@HOME initially sets a
relatively small amount as a reward. The amount gradually in-
creases over time until there is a winner (a new coverage expanding
input or crash in Fuzzing@HoME). If a node claims a discovery,
Fuzzinc@HOME resets the amount to the initial value. As a re-
sult, easy-to-find discoveries yield small rewards and hard-to-find
findings provide a higher premium.

4 IMPLEMENTATION

4.1 Fuzzing Node

We modified AFL 2.52b and libFuzzer from LLVM-11 to support our
system features such as PoFW. In our deployment and evaluation,
we mainly use libFuzzer because it has better performance and
more diverse fuzzing capabilities compared to AFL. For Linux users,
we used Docker to provide pre-built binaries and consistent envi-
ronments for fuzzing. This is important because FuzzING@HOME’s
PoFW hash relies on a program’s coverage map, which is highly
dependent on the fuzzing binaries.

AFL. We modified AFL to 1) support POFW hash generation, 2) syn-
chronize coverage with a control server, and 3) reproduce fuzzing
for verification. In particular, FuzzING@HoME hashes AFL’s edge-
coverage bitmap during fuzzing to generate the PoFW hash for a
challenge. Since AFL uses a single bitmap data structure to manages
its coverage, we share this map with the control server. This map
has a fixed size of 64Kb, which represents the edge coverage of
the execution. To produce a consistent PoOFW hash for verification,
fuzzing needs to be deterministic among multiple instances based
on the given initial test case and a random seed. Thus, we modified
AFL’s mutation algorithm to use our seed (given by the control
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server), instead of seeding its RNG through an external source, e.g.,
/dev/urandom. Finally, we modify the fuzzer to take global cover-
age information into its memory. For AFL, such synchronization is
achieved by substituting the 64Kb coverage map.

libFuzzer. Similar to AFL, we modified libFuzzer to support the
aforementioned features. However, libFuzzer has a more complex
notion of coverage measurement. Unlike AFL, which uses code
coverage as its only coverage measure, libFuzzer has several cover-
age concepts, which are called features, to improve its mutations.
For example, in LLVM-11, libFuzzer has a Table of Recently Com-
pared Value (TORC) which is a dictionary data structure that tracks
operand values of compare instructions to satisfy multi-byte com-
parisons (targeting magic values). Currently, FuzzING@HOME’s
global coverage synchronization only considers libFuzzer inline
counter arrays (similar to coverage map in AFL) that quantify the
edge coverage information.

WebAssembly Support. Initially, we did not support WebAssem-
bly (WASM)-based fuzzers. However, user feedback from our pre-
liminary experiment phase motivated us to support heterogeneous
computing environments with easy setup. WASM is a great fit for
this purpose as it runs inside web browsers. By simply navigating
to a page, users can utilize their mobile phones, tablet, desktop
and other computing devices regardless of their operating system
(Windows, Mac, or Linux). To implement the WASM-based fuzzing
pool, we use emscripten compiler with SanitizerCoverage in the
build process, which instruments a binary with code coverage sup-
port. Then, the binary is linked with our modified and pre-compiled
1ibFuzzer.a library because emscripten currently lacks libFuzzer
support as part of compiler runtime [16]. After compilation, we
use WebAssembly APIs to implement FuzzING@HOME protocols
and other features such as global coverage synchronization. For
ASAN [45] instrumentation, we maintain versions of the software
w/ and w/o ASAN for efficiency. If the client machine has sufficient
memory (e.g., desktop computer) we provide the ASAN instru-
mented version, otherwise not (e.g., mobile). To encourage user
participation, we also put effort towards a friendly web interface.
In particular, we use web-worker threads for real-time user inter-
action and allow users to manually mutate the libfuzzer test cases
with their mouse and keyboard when the fuzzer is running. As
humans can sometimes instinctively pick up on valid/invalid data
patterns, they can potentially help solve constraints that computers
cannot quickly solve through its algorithmic input generation and
mutation. This feature is a graphical interface implementation akin
to prior human-assisted fuzzing work introduced by HaCRS [48].

4.2 Control Server

To support as many nodes as possible, the control server is im-
plemented using asynchronous frameworks — aiohttp [3] with
communication over REST APIs.

Verification. For PoFW verification, the control server waits for an
answer from a client. If the client does not answer the challenge in a
configured time period, the challenge will be discarded. If an answer
arrives in time, the server checks its validity and compensates the
participant according to the policy, which can be adjusted based
on the usage of Fuzzing@HoME. To verify coverage expanding
and crashing inputs, the control server runs the fuzzing target
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with the given input using the same isolated environment as the
node. The control server then verifies the coverage expansion using
its global coverage information and performs de-duplication for
crashes. Unlike PoFW reports, the discovery rate for coverage and
crashes drops significantly as new corpus accumulates (see §5.1).
However, because this verification introduces a large overhead due
to the execution cost of running the application, FuzziING@HOME
limits the number of reports per transaction to mitigate a potential
denial of service attack.

Corpus Pruning. The control server also needs to supply starting
inputs to each node based on the global corpus in an efficient way to
avoid running duplicated test cases. In the short-term, duplication
can be avoided by randomly and evenly splitting the global corpus
to distribute to nodes. However, in the long-term, proper pruning
of the corpus is vital to reduce duplicates. As coverage expands,
the probability that a new test case is a superset of an older one
increases. In this case, mutating the old subset test case results in
many duplicates covered by the newer test, resulting in wasted
fuzzing effort. The control server implements corpus pruning with
afl-cmin for AFL-based fuzzing pools and -merge option for lib-
Fuzzer based ones. The timing of corpus pruning is dynamic based
on the number of coverage reports and total corpus size.

Daily Coverage Reports in Fuzzing Pools
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Figure 4: Daily coverage discovery trend in FuzziINnc @HOME since
the public launch. The graph suggests that difficulty of finding new
code coverage exponentially increases over time. Due to lack of space,
this is a subset of the entire data that shows the overall tendency
(full data shown in appendix).

4.3 Deployment

We deployed our implementation of FuzzING@HOME as a real-
world service. 2 At the time of writing, FuzzING@HoOME has been
running for 330 days with 72 fuzzing pools and 826 unique users.
We chose 72 open source projects part of Google’s OSSFuzz [44]
project to aid with comparing to an existing distributed fuzzing
project. Each project has a fuzzing pool with a dedicated control

Zfor anonymity, we omit information to access this service.
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server. We used 42 projects based on Docker on Linux and 30 based
on WASM. For non-OSSFuzz projects, we collaborated with Bitcoin
maintainers and released a fuzzing pool that contains 142 fuzzing
harnesses for fuzzing the Bitcoin Core project. Any open-source
project can be integrated with FuzzING@HoME’ build system by
replacing the underlying compiler. During our deployment, we
computed 5,908 G fuzzing executions (with a peak rate of 1.8 M
exec/sec) and accumulated over 500 K unique test corpora (# of
input files). As a result, we found 37 unique bugs as summarized
in Table 1.

Project # Unique Bugs  Description

Apache Arrow 1 null pointer dereference

heap-read-buffer-overflow

Clamav 2 null pointer dereference
stack-write-buffer-overflow
out-of-memory

FreeImage 5 allocation-size-too-big
heap-write-buffer-overflow
global-read-buffer-overflow

Capstone 1 global-read-buffer-overflow

htslib 1 out-of-memory

libtift 1 out-of-memory
calloc-overflow
allocation-size-too-big
out-of-memory
SEGV on unknown address (9)

matio 21 stack-write-buffer-overflow
heap-read-buffer-overflow (5)
heap-write-buffer-overflow
memcpy-param-overlap
floating point exception

Samba 1 heap-read-bufferoverflow

Xvid 1 heap-read-bufferoverflow

mruby 1 out-of-memory

stb 1 heap-read-buffer-overflow

quickjs 1 heap-read-buffer-overflow

Total 37 unique bugs found

Table 1: Unique bugs found during Fuzzinc @HomE’s public deploy-
ment. The numbers in the parenthesis in matio’s row is the unique
bug count based on manual analysis. The entire history of bug dis-
covery and analysis can be found in Table 6.

Figure 4 visualizes the tendency of code coverage accumulation
over time in fuzzing pools. From the data, we can see coverage
discovery peaks dramatically in the short period after deployment
then tanks in a few days as code paths saturate. This significantly
reduces the control server overhead in time. During the service
run, we found 37 unique bugs and reported all found bugs to ven-
dors. The number of bugs was originally 191 based on existing
de-duplication technique. Due to limitations in these techniques,
after manual root cause analysis and collaboration with the ven-
dors, we arrived at the unique bug number. Some of the bugs found
during FuzziINg@HoME’ deployment were also simultaneously re-
ported by ClusterFuzz (through OSSFuzz). As mentioned before, our
fuzzing targets are a subset of OSSFuzz’s (except Bitcoin), which
has been fuzzed for years. At this point, FuzzING@HOME is still
far from ClusterFuzz in terms of scale (using 26,000 cores). How-
ever, our preliminary deployment shows that FuzzING@HOME is
effective at discovering bugs as an open fuzzing platform and may
outperform ClusterFuzz, given increased public participation.
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4.4 Load Balancing for Scalability

FuzzING@HOME’s control server adjusts its transaction load by
dynamically measuring the overhead for each fuzzing transaction.
When a client node requests a fuzzing transaction, the control
server not only creates a POFW challenge but also anticipates an
amount of computation time to solve the puzzle. The amount of
time is dependant to computing power of existing nodes. Initially, a
control server cannot accurately predict the expected time to solve
the puzzle; thus it empirically assigns the pre-defined size of the
transaction. Over time, the control server measures the response
time of clients and adaptively regulates the amount of work. For
example, if the client solves a puzzle too fast, the next transaction
size doubles up (exponential back off). Likewise, if the client solves
a puzzle too slowly, the next transaction size will be reduced in
half. In this way, the control server regulates expected time interval
between PoFW reports. In our prototype, this interval is set to
10 minutes. This can be changed based on the control server’s
computation power and the number of participating clients in the
pool.

Additionally, to handle malicious clients DoS-ing the control’s
verification load with a massive amount of fake reports, the control
server configures minimum/maximum timeout range and filters
out extreme cases. Reports outside of such expected range are
considered malicious and discarded to protect the control server
from denial-of-service attacks.

5 EVALUATION

We evaluate FuzzING@HOME using our private computing clus-
ter and real-world logs collected from FuzziNg@HoME users. Our
private computer cluster for evaluation consisted of 18 identical
servers with 24-core AMD Ryzen CPUs, 32GB RAM, and 512GB
SSDs. In this section, we attempt to answer the following questions:

o How scalable is FuzziINg@HoME with respect to the number
of nodes and global coverage synchronization? (§5.1)

How much overhead does FuzziING@HOME incur to run on
top of untrusted nodes? (§5.2)

Is it okay to use coverage maps for PoOFW? (§5.3)

How effective is FuzzING@HOME’s cheat prevention? (§5.4)
What are the costs of WASM-based fuzzing? (§5.5)

5.1 Scalability

To evaluate FuzziIng@HOME’ scalability, we constructed four pri-
vate fuzzing pools. We chose two big projects (capstone and
FreeImage), and two small projects (1ibmpeg2 and WavPack) based
on the size of their codebases, as shown in Table 5. Then, we mea-
sured the overall execution speed of each fuzzing pool while gradu-
ally increasing the number of nodes up to four hundred, which is
the maximum possible node number on our available hardware.
Figure 5 shows our results; FuzzING@HoOME eventually scales
for every project that we tested (i.e., after 48 hours). However, if
we focus on the initial phase of the fuzzing pool (before coverage
saturation), we observe that overall performance is not propor-
tional to number of nodes in capstone and FreeImage. This is due
to a large amount of coverage discovery reports. In our evaluation,
both capstone and FreeImage took more than 24 hours before code
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Project 1st 2nd 3rd ‘ ‘ Project 1st 2nd 3rd
arrow 7.3% 6.6% 5.9% lame 1.6% 1.0% 0.1%
binutils 21.5% 14.7%  13.3% libmpeg?2 0.3% 0.2% 0.1%
capstone 0.8% 0.4% 0.1% libpcap 37.1% 5.6% 2.2%
c-ares 33.8% 5.6% 1.8% libpng-proto  11.6% 0.9% 0.5%
eigen 32.4% 18.6% 14.6% libtiff 10.0% 3.6% 2.8%
ffmpeg 0.6% 0.2% 0.1% libzip 1.7% 0.8% 0.4%
flac 6.2% 5.4% 3.0% || lodepng 26.8% 23.8% 17.3%
freeimage 1.4% 1.2% 1.0% matio 25.5% 8.1% 7.0%
gfwx 32.6% 5.4% 3.4% mruby 1.5% 0.2% 0.1%
giflib 31.4% 9.8% 2.8% ntp 26.7% 6.4% 5.6%
htslib 21%  03%  0.1% || php 183%  29%  0.3%
jansson 4.1% 4.0% 3.2% wavpack 2.2% 0.1% 0.1%
kcodec 0.6% 0.4% 0.1% zlib 0.2% 0.1% 0.1%

1st: Highest percentage of duplicated hashes
2nd: 2nd Highest percentage of duplicated hashes
3rd: 3rd Highest percentage of duplicated hashes
Table 2: Three highest hash-duplication-ratios among 1M executions.
Inputs are auto-generated by libfuzzer mutation from empty corpus.
If the input mutation is too small, the program will take exact same
code path; producing same coverage map.

coverage saturates. Therefore, during the initial 6 hours, the con-
trol servers for both capstone and FreeImage are under a colossal
coverage verification load, thus slowing down the overall fuzzing.
For WavPack and libmpeg2, coverage saturates within an hour, thus
quickly relieving the control server from the verification load. This
evaluation shows the importance of reducing duplicated coverage
reports in FuzzING@HOME.

We claim FuzziING@HOME can achieve scalability because main
loads are either 1) linearly proportionate to number of clients or 2)
high/unpredictable but exponentially decrease over time (Figure 6).
The number of transaction scheduling tasks is linearly proportional
to the number of nodes, and its overhead can be very minimal
because control server can adjust (increase) the difficulty of PoOFW
challenge. Verifying coverage and crash reports from nodes incurs
high overhead because FuzzING@HOME needs to re-run a target
application under isolated docker environment to securely validate
each claims. However, as shown in Figure 6, the number of coverage
discovery reports decreases exponentially over time, making the
long-term overhead insignificant. This drop comes from a tendency
that the discovery of new coverage becomes more difficult as time
goes on [6]. As seen in the figure, global coverage synchronization
in FuzzINa@HoME further reduces this overhead by forcing nodes
to validate their claim locally before submitting it to the control
server.

5.2 Overhead for using Untrusted Node

To measure the overhead of FuzzING@HOME’ security-centric de-
sign and features, we use ClusterFuzz (Google’s distributed fuzzing
project) as a baseline for comparison. We ported ClusterFuzz 1.8.0 to
run locally on our machines without interacting with Google Cloud
Storage (GCS). To replace GCS, we patched gsutil commands and
modified them to use SFTP. ClusterFuzz provides two setup environ-
ments: production setup and local setup. In the production setup,
users have all the functionalities provided by ClusterFuzz, with the
help of Google Cloud services like Cloud Datastore, Google Cloud
Storage, BigQuery. In the local setup, users do not have all the func-
tionalities provided by ClusterFuzz. Datastore is running locally.
Google Cloud Storage is replaced by the local file system. BigQuery
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Figure 5: FuzzING@HOME scalability evaluation result. The upper row are exec/sec after running a fuzzing pool for more than 48 hours (to
measure server stress after the coverage is saturated) while the lower row is average exec/sec speed in the initial 6 hours. (to measure control
server’s verification load during coverage saturation phase). capstone and FreeImage take more than 24 hours to saturate their coverage, while
WavPack and libmpeg2 take less than an hour. Coverage reports tend to drop off steeply once a project has been fuzzed for a few days.
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Figure 6: FuzzING@HOME coverage report frequency. With a new pool, we measured the number of coverage discovery reports with and
without global coverage sync. The results indicate that global coverage sync substantially decreases the number of duplicate reports.
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Figure 7: Coverage expansion rate for ClusterFuzz and FuzziINc@HoME with identical initial corpus, hardware, and software environments.

related components are disabled. The server and bots run on the
same machine. We use neither but modified the source code based
on the local setup using version v1.8.0 with the goal of running
ClusterFuzz on our cluster. To enable Datastore, socat is used to
transfer local port messages with the outside. To replace Google
Cloud Storage, all the file transmission between the server and the
bots goes through SFTP instead. Figure 8 contains the ClusterFuzz
parameters we used in our evaluation.

After porting, we ran ClusterFuzz and FuzziING@HoME with the
same computing power (a 100 node cluster). We fuzzed the same ap-
plications as before (i.e., capstone, libmpeg2, WavPack, FreeImage)
with Fuzzing@HoME and ClusterFuzz for 48 hours and measured
the difference in their overall code coverage expansion rate. Both
systems use the same version of libFuzzer for their fuzzing engine,
identical initial seed corpus, and runtime environment.
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Project # execution || Project # execution
arrow 63K lame 16K
binutils 125K libmpeg?2 14K
capstone 54K libpcap 387K
c-ares unseen libpng-proto 492K
eigen unseen libtiff 318K
ffmpeg 233K libzip 404K
flac unseen lodepng unseen
freeimage 69K matio 341K
gfwx 516K mruby 23K
giflib 582K ntp unseen
htslib 462K php 93K
jansson unseen wavpack 65K
kcodecs 7K zlib 120K

# execution: Number of executions until first hash deviation is observed.
unseen: Deviation not observed within 1M executions.

Table 3: Due to non-determinism, a program can yield different cov-
erage map even with the same input. This form of non-determinism
generally occurs due to asynchronous interrupts. If a program in-
herently depends on randomness (e.g., /dev/urandom), it must be
patched.

Figure 7 shows the results. In FuzzING@HOME, due to the verifi-
cation overhead, the executions per second of individual nodes are
lower than that of ClusterFuzz. However, coverage synchronization
between nodes earns more efficiency over ClusterFuzz. Overall,
the results indicate there is no significant difference. What we
see is that FuzziING@HoME outperforms ClusterFuzz in FreeImage,
capstone, but falls behind in the case of WavPack, 1ibmpeg2. Multi-
ple factors can explain these results. One such factor could be that
FreeImage and capstone are relatively large code-bases, thus there
are a huge number of paths for new coverage, which are efficiently
de-duplicated in FuzzING@HOME.

Parameter Values
Distribution -fork=20
Templates libfuzzer, engine_asan, prune

Pruning Hour 12 hours

Environment Variables MAX_TESTCASES=1, FORK_STRATEGY=1
Task Lease Time 1 hour (1 day default)

Corpus Pruning Timeout 1 hour (22 hours default)

OS Version Ubuntu 16.04

Figure 8: ClusterFuzz Parameters used in our evaluation.

5.3 Collision Rate in Coverage Map

Duplicated Coverage Maps. As FuzziNcg@HoME utilizes a cov-
erage map as an approximation of hash for a proof-of-work mech-
anism, we evaluate if this is a practical approach. Ideally, PoOFW
requires a unique execution hash for a unique input data. However,
if a program is small, multiple inputs can trigger the same code
path; thus yielding the same execution hash, which is a collision.
To measure this collision rate, we randomly picked libfuzzer stubs
in 26 open source software in OSSFuzz and gathered 1 million exe-
cution hashes from different inputs. Among the million hashes, we
measured the percentage of duplicated ones and summarized the
highest three cases in Table 2.
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From the evaluation result, we observe a quite high collision
rate (over 20%) in binutils, c-ares, eigen, gfwx, giflib,
libpcap, lodepng, matio, ntp. We conducted manual anal-
ysis for such cases and found out reasons for such a high colli-
sion rate is (i) an input has a complicated format, (ii) we did not
have an initial seed corpus, and (iii) a program is too small. For
instance, binutils (stub: fuzz_disassemble) and libpcap
(stub: pcap_compile) show a high collision rate because they
were syntax parsers (opcode parsing, pcap language parsing); thus
multiple malformed input take the same error path. In case of
matio, ntp,we started fuzzing from empty seed corpus; thus there
are trivial malformed immature inputs. c-ares, eigen, gfwx,
giflib, lodepng had small libfuzzer stub code base (hundreds to
thousands of LoC). For matio, ntp, binutils, libpcap colli-
sion rates will decrease over time as seed corpus gets mature after
multiple fuzzing transactions.

The high collision rate indicates that a participant could fake
a PoFW without executing the fuzzer. Our evaluation suggests
that for OSSFuzz targets, a malicious participant might construct a
fake PoFW answer and validated one out of ten trials in average.
However, if the system administrator imposes even a small penalty
for a wrong PoFW answer, goofing attacker will eventually earn
negative rewards, therefore losing its advantage.

Non-determinism. If FuzzING@HOME penalizes participants for
wrong PoFW responses, we must consider the case where an honest
user unintentionally returns a wrong answer due to a program’s
non-deterministic behaviors. POFW’s hash calculation is based on a
program’s code coverage; thus ideally we need the path taken by a
program’s execution to be identical with repeated inputs under the
same environment. Unfortunately, this is not always true, especially
with larger and more complex programs. For example, if a system
call gets interrupted with EINTR, a program could go down another
path to retry it. In this case, the code coverage and, consequently,
the execution hash will change.

To measure the extent of non-determinism in execution hash,
we repeat fuzzing execution with exact same input under same
conditions and gather results. Table 3 summarizes coverage map
deviation rates for each target application. We iterated executions
in 1K unit until we find a deviating execution hash. We put unseen
in the graph in case we could not find deviation after 1M executions.
The evaluation result indicates that the probability of unintention-
ally penalizing an honest user’s PoOFW report should be very small
(less than 0.01% in most cases). If FuzzING@HOME requires higher
PoFW accuracy, additional work would be required. We note, chang-
ing non-deterministic execution to be deterministic is an on-going
research topic in general [13, 30, 35, 49].

5.4 System Fairness

Goofing Attack. To evaluate how effectively FuzzING@HOME
can detect goofing, we synthesize a goofing attacker that fakes
the PoOFW answer based on the highest duplicated coverage map
information as in Table 2. In our evaluation setup, a control server
rewards user 1 point for each correct POFW answer. If the partic-
ipant is honest, the expected reward amount should be linearly
proportionate to the number of solved PoOFW challenges in any
fuzzing pool. We synthesized cheaters in four fuzzing pools (arrow,
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Project/Fuzzer N-A  W-A N-NA W-NA
bzip2/bzip2_compress_target 2,004 270 2,501 2,598
bzip2/bzip2_decompress_target 17,597 2,909 26,402 21,146
guetzli/guetzli_fuzzer 21,776 2,365 17,858 14,828
hoextdown/hoedown_fuzzer 8,415 912 9,380 6,171
http-parser/fuzz_parser 95,361 4,693 98,080 64,010
http-parser/fuzz_url 84,443 4,510 93,807 77,950
json-c/tokener_parse_ex_fuzzer 52,064 1,612 55,699 43,174
libpcap/fuzz_both 13,597 3,276 15,930 13,366
libpcap/fuzz_filter 11,169 1,692 14,908 13,852
libpcap/fuzz_pcap 14,048 3,276 14,647 13,959
libtsm/libtsm_fuzzer 6,846 270 6,955 5,532
libyaml/libyaml_fuzzer 17,320 1,491 23,580 23,977
lodepng/lodepng_fuzzer 55,671 2,946 73,405 44,173
lzma/7z_fuzzer 39,016 1,076 40,961 29,775
Izma/filters_fuzzer 10,091 1,008 17,369 16,930
1zma/lzma2dec_fuzzer 7,026 334 12,751 11,988
lzma/lzma2enc_fuzzer 1,771 102 3,872 3,669
lzma/lzmadec_fuzzer 1,804 437 3,602 4,041
Izma/lzmaenc_fuzzer 109 29 305 222
lzma/ppmdenc_fuzzer 1,427 925 2,353 1,783
Izma/xzenc_fuzzer 29 8 82 65
1zo/all_lzo_compress 12,302 1,218 12,846 13123
1zo/1zo_compress_target 65,649 3,524 88,960 43,516
1zo/1zo_decompress_target 103,294 2,471 105,184 60,311
nestegg/fuzz 66,071 3,646 80,161 61,680
nghttp2/nghttp2_fuzzer 40,721 2,270 46,863 24,966
rapidjson/fuzzer 51,166 2,677 60,293 27,393
tinyxml2/xmltest 134,756 2,611 184,365 69,905
yajl-ruby/json_fuzzer 104,143 2,652 155,461 58,587

N-A: Native with ASAN, W-A: WASM with ASAN,
N-NA: Native without ASAN, W-NA: WASM without ASAN
Table 4: WASM fuzzer performance comparison. Numbers are
exec/sec measured with libfuzzer.

binutils, capstone, and c-ares), which are the first four test
case in Table 2 with various execution hash collision rates. Our
synthesized cheater observes duplicated coverage maps and picks
most frequently observed coverage map case and responds with the
PoFW answer without actually running the fuzzer. We measured
the accumulated rewards of such cheaters under two fuzzing pool
configurations: (i) no penalty for the wrong PoFW, (ii) 50% penalty
for wrong PoFW. Figure 9 is the result of this evaluation.

The graph shows that 50% penalty reward is sufficient to pre-

vent cheaters goofing against high coverage-map-collision-rate
applications (binutils, c-ares exceed 20% coverage collision
rate). Intuitively, higher penalties should render goofing attempts
pointless. However, considering that there are edge cases due to
non-determinism (Table 3), overly large penalty values should be
avoided.
Stashing attack. Stashing is another form of cheating
in FuzzING@HoME. It involves a malicious user that hon-
estly participates in PoFW calculation but withholds discovery.
FuzzING@HOME’s primary mechanism to deal with this issue relies
on the principle that a bug or coverage found by a malicious node
will quickly be found by another if the participants share input
corpus. Theoretically, this is because FuzzING@HOME is built with
the explicit design goal of distributing inputs and global coverage
information, thus ensuring that there is a high likelihood of another
node using the most recent input corpus to find the bug.
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In practice, we evaluated how long it takes for one unique bug
to be discovered and then consequently re-discovered by other
nodes. Table 6 notes the exact dates and times that particular bugs
were found during FuzzINé@HoOME’ evaluation. The data indicate
that stashing only provides an attacker with prior knowledge of
a few minutes to hours of a bug before another node discovers it
(e.g., clamav). As a result, stashing a discovery will not benefit the
attacker because such discoveries will be quickly publicized. Getting
validation of the stashed bug from other bug bounty programs
requires significantly more time.

5 Bl 5

T S 2

This 1 is a fragment of current libfuzzer data.
Try mutate as you want (L/R Click and Keyboard).
Your result will be appended to next fuzzing round.

Figure 10: WASM-fuzzer running inside Chrome. The WASM-fuzzer
randomly picked one test case and displayed it as a hex-dump. Black

tiles are unchanged bytes, and grey tiles are mutated ones by the
user.

5.5 WASM-based Fuzzer Performance

WebAssembly (WASM) is useful technology in our project in terms
of supporting heterogeneous devices and increasing user accessi-
bility. Figure 10 is a screen capture of Chrome web browser run-
ning FuzzING@HoOME’s fuzzer. Some bugs in our evaluation (stb,
quickjs) were found by WASM-based fuzzers (ASAN enabled).
However, WASM-based fuzzers have the following limitations: (i)
limited memory and battery problems in mobile devices, (ii) slower
performance compared native execution environments, and (iii)
high-cost or infeasible porting. Currently, WASM only supports
32bit virtual memory spaces (due to sandboxing) which is too small
for fuzzers, especially with Address Sanitizer (ASAN)’s memory
overhead. The memory limitation becomes more challenging in
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Figure 9: Efficacy of cheating against PoOFW challenge. honest is the reward amount for honest participants, cheat is the reward for attacker in
each fuzzing pool; goofing with predicted-hash (highest duplication rate) based on the evaluation result in Table 3. Upon correct answer, the
reward is 1 point. The left graph does not impose a penalty for wrong answer while the right side imposes -0.5 point as penalty.

mobile browser environments as their memory limit is more strict
(often less than 1GB) compared to desktop browsers; resulting
in unpredictable/significant performance slowdown. Due to this
limited memory, we only support ASAN for environments that
have more memory, such as desktop browsers.

Although WASM ultimately executes a native binary, it is known
to incur performance overhead [25]. Table 4 contains a performance
comparison of the WASM fuzzer versus Linux-based fuzzers. Av-
erage WASM performance without ASAN shows 12% (worst case
of 63% in yajl-ruby/json_fuzzer) slowdown, and 89% (worst
case of 98% in tinyxml2/xmltest) slowdown when ASAN is en-
abled. The result indicates that performance overhead in WASM is
primarily due to ASAN which requires significant memory usage.
If we consider a massive number of potential participants who join
because of the improved accessibility offered by WASM, we believe
its performance overhead is somewhat acceptable>.

Another limitation is the difficulty/impossibility of porting large
projects to run with WASM. We attempted to port over 200 projects
from OSSFuzz to run on WASM, and succeeded with 30. As large
projects often involve complex build systems and multiple depen-
dencies, which can cause build failure or runtime errors, the 30
projects we succeeded in porting to WASM are relatively small ones.
With more engineering effort, we estimate it would be possible to
port around half of OSSFuzz projects.

6 DISCUSSION AND FUTURE WORK

Sybil Attacks. An attack that distributed networks face is the
Sybil attack, where a single entity controls a large portion of the
network’s nodes. Note that the 51% attack on cryptocurrencies does
not apply to FuzziING@HOME because there is no decentralized
blockchain to verify. In Fuzzina@HoME, globally shared knowl-
edge is entirely controlled by the control server; thus a single node
cannot gain rewards without finding bugs or crashes via sheer
computing power.

Joining as a software maintainer. To join FuzzING@HOME as
software developer who wants to fuzz the application, one has to
port their code to run under a Fuzzincg@HoME-provided fuzzer
(libfuzzer or AFL). Additionally, a control server code based on

3Currently, protocols in WASM fuzzing pool and native libfuzzer fuzzing pool are
incompatible.

python-flask is needed to manage user authentication and orches-
trate fuzzing. At this point, all control servers in our evaluation
are managed by us, and all beta-test users are participating as
fuzzing clients. In the future, we intend to expand the system to
autonomously allow software maintainers to easily join our infras-
tructure.

User Trust Levels. To reduce the control server overhead, we
can differentiate levels of trust for users based on their fuzzing
activity. This allows FuzziNg@HOoME to reduce the amount of PoOFW
verification, and hence overhead, on nodes that have been known
to submit valid PoOFW values over time. This would be analogous
to banks and credit scores: new account holders are not generally
allowed access to higher loans until they make regular payments on
smaller ones. FuzzING@HoME could still perform some verification
and allow dropping the trust level to account for trustworthy nodes
turning malicious.

Towards an Autonomous Ecosystem. FuzziING@HoME ulti-
mately attempts to form an ecosystem, where software maintainers
and public users can establish a market. To that end, it requires a
system for quantifying the economic value of bugs and automate
converting bugs into bug bounty submissions. However, automati-
cally assessing the economic worth of bugs and bug bounty sub-
missions is a hard, if not impossible, problem to solve. Bug bounty
incentives are usually holistically reviewed by human reviewers
who consider multiple factors [17] like impact, bug type, and quality
of the report. Therefore, FuzzING@HOME's reward needs to involve
the developers of the software running on the fuzzing pool and
their decisions and policies. With sufficient users, we believe soft-
ware maintainers seeking large computation power for fuzzing can
incentivize users by rewarding the fuzzing pool, allowing points to
be cashed out.

7 RELATED WORK

Large-scale Fuzzing Infrastructure. Thanks to the excellent
parallelizability of fuzzing, many fuzzing infrastructure projects
have been created. Fuzzing-as-a-Service (FaaS) systems have been
launched that allow end-users to fuzz their application without
the hassle of physically owning machines or setting up fuzzing
software. Google has developed a project called ClusterFuzz [24]
that runs on thousands of virtual machines to fuzz their products
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internally. To improve public security, Google has further released
OSS-Fuzz [44], donating their computational resources and pro-
viding an interface to ClusterFuzz to fuzz open-source software.
Moreover, many FaaS systems have been proposed. For example,
Microsoft’s Project SpringField [33] provides a cloud-based ser-
vice with its white-box fuzzing. Companies like FuzzBuzz [18] and
Fuzzit [19] create platforms for continuous fuzzing: incorporating
fuzzing into the development process to discover vulnerabilities
proactively. Unlike these projects that use trustworthy machines to
perform fuzzing, FuzziING@HOoME allows any user to participate in
the fuzzing process, even malicious ones.

Crowd-backed Public Computing Projects. Several distributed
computing projects have successfully used volunteer computing
power in the last two decades. Folding@Home targets protein fold-
ing. Notably, during the COVID-19 pandemic, hundreds of thou-
sands of users joined the network to push it past 1 exaFLOPS [37].
Another project, SETI@Home, ran from 1999 to 2020 and processed
astronomical data from telescopes [4] to search for extra-terrestrial
life. distributed.net cracked DES encryption in 1998 to demonstrate
its insecurity [51]. Similar to these projects, FuzzING@HOME can
be used as a platform to direct voluntary distributed computing to-
wards public good. However, compared to these volunteer projects,
FuzziING@HOME aims to reward contributors with direct/tangible
rewards (e.g., the discovery of a crash which could lead to pay-
out or credits on a patch report). FuzzING@HOME hence needs to
deal with malicious users who might try to defraud the system for
unfair monetary benefits, resulting in various techniques such as
Proof-of-Fuzzing-Work.

Improving Fuzzing. The majority of previous works in fuzzing
focus on better input generation [39] and seed selection. MOPT [32]
and AFLFast [7] aim at improving fuzzer performance by improv-
ing input selection using power schedules. Concolic and hybrid
fuzzers [12] like QSYM [57] and Driller [50] focuses on improving
input generation by using constraint solving to get past conditional
branches. These fuzzers can satisfy checks that stymie other fuzzers,
like checksums or magic numbers. Grammar-based fuzzers try to
avoid generating obviously-invalid inputs by constraining inputs
to a grammar specification [20, 27, 40, 53] which is useful when
fuzzing a language such as Javascript or parsers. CollabFuzz [38]
and EnFuzz [11] utilize multiple fuzzers to collaborate for better
performance. The collaboration in these works focus on combining
multiple different fuzzing algorithms to cover each other short-
comings; while collaboration in our work is focused on expanding
the computation scale of a single fuzzing algorithm. Lastly, some
fuzzers use machine learning to aid in generating [8, 21, 41, 47]
or selecting promising inputs [10, 46]. Instead of focusing on a
particular fuzzer’s performance, FuzzING@HOME’s contribution in
this direction focuses on distributed fuzzing, especially utilizing
untrusted machines.

8 CONCLUSION

FuzzING@HOME is the first work to support distributed fuzzing
based on untrusted heterogeneous clients. Fuzzing@HoME allows
us to establish a distributed fuzzing network in the form of a public

Daehee Jang, Ammar Askar, Insu Yun, Stephen Tong, Yigin Cai, and Taesoo Kim

collaborative project. Our system is designed to accommodate un-
trusted fuzzing participants and also optimize distributed system
performance by reducing duplicate computation.
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A APPENDIX

Table 5 lists the overall numbers of POFW transactions, coverage ex-
pansion reports and bugs discovered in 72 FuzzING@HOME mining
pools after 330 days of being deployed. Table 6 is the crash discovery
log collected from FuzziNng@HoME. Two bugs (null-pointer derefer-
ence in arrow, out-of-memory in 1ibtiff) were discovered from
our internal testing environment and not the public deployment.
These are excluded from the table. Figure 11 is the entire coverage
discovery result of FuzzING@HOME beta service.
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Daily Coverage Reports in Fuzzing Pools
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Figure 11: Coverage discovery trend in FuzziINc@HoME fuzzing pools since the service’s launch date. Data collection was paused around day 54
to perform maintenance on the server infrastructure. In day 143, we performed major version update to fuzzing pools.
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Project libfuzzer LoC ~ # PoFW # Coverage  # Crash Description

arrow 26,722 84,812 5,543 1 Cross-language development platform for Apache in-memory data
avahi 51,611 1,101,050 39,827 0 Apple Zeroconf specification, mDNS, DNS-SD and RFC 3927/IPv4LL
bitcoin 164,735 2,634,954 38,383 0 Open source project which maintains and releases Bitcoin client
bzip2 7,344 13,873 1,256 0 File compression program

binutils 527,834 184,093 13,844 0 GNU collection of binary tools

Capstone 341,292 22,327 44,310 3 Disassembly framework

ClamAV 530,349 1,420,618 97,324 6 Antivirus engine

django 80,394 321,731 1,204 0 High-level Python Web framework

eigen 2,587 156,180 7,310 0 C++ template library for linear algebra

flac 15,793 179,964 80 0 Free Lossless Audio Codec

ffmpeg 8,987,070 203,003 19,902 0 Leading multimedia framework

gfwx 1,607 6,749 4,763 0 Video codec

ghostscript 376,936 193,411 12,930 0 Interpreter for the PostScript language

giflib 1,713 10,484 640 0 GIF image parser library

hostap 254,390 89,541 13,032 0 Implements IEEE 802.11 management, IEEE 802.1X/WPA/WPA2/EAP
htslib 38,339 13,441 10,115 2 C library for high-throughput sequencing data file format
jansson 3,324 20,660 1,661 0 C library for encoding, decoding and manipulating JSON
c-ares 6,164 9,878 783 0 C library for asynchronous DNS requests

kcodecs 8,901 11,314 1,643 0 Collection of methods to manipulate string encodings
lame 20,160 8,995 5,951 0 MPEG Audio Layer III (MP3) encoder

libmpeg?2 14,573 13,573 3,575 0 Library for decoding MPEG-1 and MPEG-2

libpcap 82,401 16,976 8,077 0 Library to capture live network data
libpng-proto 79,818 11,533 7,221 0 PNG reference library

libssh2 13,367 136,604 942 0 C library implementing the SSH2 protocol

libtiff 50,958 12,000 11,139 3 Library for Tag Image File Format (TIFF)

lodepng 5,264 15,756 1,605 0 PNG image decoder and encoder

1z4 32,769 9,682 16,166 0 Lossless compression algorithm

matio 11,162 596,220 14,766 118 C library for reading and writing binary MATLAB MAT files
mruby 34,533 13,805 15,328 3 Lightweight implementation of the Ruby language

ntp 59,152 12,992 523 0 Protocol designed to synchronize the clocks over a network
openssl 506,730 137,110 18,911 0 Implementation of TLS and SSL protocols

php 1,508,724 165,799 40,142 0 General-purpose scripting language

picotls 28,769 15,772 889 0 TLS 1.3 (RFC 8446) implementation written in C
pillow 38,442 21,973 1,126 0 Python Imaging Library

proxygen 27,652 12,031 5,315 0 C++ HTTP abstractions used at Facebook
freeimage 223,485 561,804 27,861 46 Library for image formats including PNG, BMP, TIFF and others
libzip 6,744 10,803 3,036 0 C library for reading, creating, and modifying zip archives
wavpack 5,007 88,338 9,703 0 Audio compression format

wireshark 4,353,042 168,741 36,094 0 Network packet analyzer

xvid 32,250 99,080 13,245 2 Video codec strong in compression

zlib 26,320 10,004 3,853 0 Library used for data compression

hunspell 11,650 3,855 143 0 Spell checker of LibreOffice, Mozilla Firefox 3 and others
samba 739,401 2,095,505 20,398 6 Windows interoperability suite of programs for Linux
brotli (wasm) 20,614 247 1,378 0 Generic-purpose lossless compression algorithm
bzip2 (wasm) 7,344 1,431 3,780 0 File compression program

gfwx (wasm) 1,607 32,708 898 1281 Video codec

guetzli (wasm) 10,561 344 1,708 0 JPEG encoder that aims for excellent compression
haproxy (wasm) 174,463 3,489 2,784 0 Reliable, High Performance TCP/HT TP Load Balancer
hoextdown (wasm) 9,574 740 3,134 0 A fully functional (X)HTML renderer
http-parser (wasm) 8,125 22,554 30,653 0 This is a parser for HTTP messages written in C
json-c (wasm) 10,404 1,699 13,940 0 JSON-C implements a reference counting object model
libexif (wasm) 13,828 2,674 950 53 libexif is a library for parsing, editing, saving EXIF data
libfdk-aac (wasm) 165,957 103,738 6,906 0 library for encoding and decoding Advanced Audio Coding
libpcap (wasm) 82,401 5,646 2,838 0 Library to capture live network data

libtsm (wasm) 10,331 7,693 5,263 391 Terminal-emulator State Machine

libucl (wasm) 15,980 81 443 0 Libucl: Universal configuration library parser
libyaml (wasm) 14,309 2,061 5,181 0 C library for parsing and emitting YAML

lodepng (wasm) 15,237 102 676 0 PNG image decoder and encoder

Izma (wasm) 89,340 12,601 25,560 0 Lempel-Ziv-Markov chain lossless compression algorithm
1zo (wasm) 18,276 7,808 7,261 547 Lossless data compression library written in ANSI C
nestegg (wasm) 4,251 2,276 3,608 0 Open source commerce solution for Ruby on Rails
nghttp2 (wasm) 49,753 1,077 1,531 0 Implementation of HTTP/2 and its header compression
piex (wasm) 3,138 268 114 0 Preview Image Extractor

quickjs (wasm) 77,969 4,474 4,717 0 Small and embeddable Javascript engine
rapidjson (wasm) 17,405 1,197 8,461 0 JSON parser and generator for C++

skems (wasm) 5,962 4,553 3,705 0 Open source 2D graphics library

sqlite3 (wasm) 179,344 145 389 0 C-language library that implements SQL database engine
stb (wasm) 56,774 904 1,613 85 Single-file public domain image libraries for C/C++
tinyxml2 (wasm) 5,624 601 501 0 Simple, small, efficient, C++ XML parser
uriparser (wasm) 11,341 2,676 9,336 0 RFC 3986 compliant URI parsing library
yajl-ruby (wasm) 3,610 705 3,762 0 YAJL C Bindings for Ruby

zopfli (wasm) 5,583 38 67 0 Library to perform very good, but slow, zlib compression

Table 5: Summary of the projects targeted and data collected during FuzziNnc @HoME’s real-world deployment. We can deduce the amount of
user activity based on # PoFW (typically single PoOFW requires a few minutes of fuzzing). Note that # coverage can be greater than # PoFW
because a single POFW can report multiple coverages. Crash numbers are before manual analysis based de-duplication is applied. Crashes in
WASM pools (libexif, libtsm, 1zo) except stb, are caused by address sanitizer false positive.
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No  Discovery Time (Day - HHMMSS) ~ Project  Description (based on addresss sanitizer) No  Discovery Time (Day - HHMM:SS)  Project Description (based on addresss sanitizer)

1 Day 04 - 20:58:38 matio allocation-size-too-big 85  Dayl6-12:21:00 ‘matio heap-buffer-overflow (read of size 1) at code location 0x313
2 Day 04 - 20:59:51 matio out-of-memory 86 Day16-21:57:08 matio out-of-memory

3 Day 04 - 23:23:24 ‘matio out-of-memory 8 Dayl6-22:3557 ‘matio SEGV on unknown address in libe

4 Day 12 - 19:06:38 matio SEGV on unknown address at code location 0xsdd 8 Day19-07:21:21 matio null pointer dereference in libe

5 Day 12 - 19:06:42 matio allocation-size-too-big 89 Day20- 041829 matio allocation-size-too-big

6 Day 12 - 19:07:57 matio allocation-size-too-big 9 Day20-10:03:45 matio allocation-size-too-big

7 Day 12 - 21:51:23 ‘matio out-of-memory 91 Day20-16:19:04 ‘matio SEGV on unknown address in libe

s Day 12 - 21:51:27 ‘matio out-of-memory 92 Day20-20:48:45 ‘matio out-of-memory

9 Day 12 - 21:51:38 matio allocation-size-too-bi 93 Day21-08:49:06 matio heap-buffer-overflow (read of size 1) at code location 0x313
10 Day12-215139 ‘matio SEGV on unknown address at code location Oxede 94 Day21-10:16:41 ‘matio floating point exception

11 Dayi2-215140 matio out-of-memory 95 Day21-1637:10 matio SEGV on unknown address at code location 0x450

12 Day12- 215200 matio heap-buffer-overflow (read of size 1) at code loc 9%  Day21-17:16:11 matio heap-buffer-overflow (read of size 49) at code location 0x638
13 Day12- 215300 ‘matio allocation-size-too-big 97 Day21-22:2005 matio null pointer dereference in libc

14 Dayli2-215%14 matio out-of-memory 95 Day22-04:47:23 matio SEGV on unknown address at code location 0x1a8

15 Day12- 215347 matio out-of-memory 99 Day22-08:41:33 matio out-of-memory

16 Day12- 215520 ‘matio out-of-memory 100 Day22-14:45:44 matio heap-buffer-overflow (read of size 1) at code location 0x313
17 Day12-215534 matio out-of-memory 101 Day 23-1430:19 htslib out-of-memory

18 matio calloc-overflow at code location 0x0b2 102 Day24- 002136 matio null pointer dereference at code location 0xf3d

19 Day12- 215637 matio out-of-memory 103 Day24-07:4236 matio out-of-memory

20 Day12-21:57:00 ‘matio SEGV on unknown address at code location 0x045 104 Day 25-09:02:39 ‘matio null pointer dereference in libe

21 Day12-2157:30 matio allocation-size-too-big 105 Day26-0120:51 matio null pointer dereference in libc

22 Day12-21:58:33 ‘matio out-of-memor, 106 Day 26 - 05:35:44 ‘matio allocation-size-too-bi

23 Day12-2200:09 ‘matio allocation-size-too-big 107 Day26- 111126 ‘matio null pointer dereference at code location 0xf3d

24 Day12-220432 matio out-of-memory 108 Day26-23:22:13 matio null pointer dereference at code location 0x59f

25 Day12-2218:53 matio SEGV on unknown address at code location 0x045 109 Day 28 - 08:35:20 matio null pointer dereference in libc

26 Day12-22:20:08 matio allocation-size-too-big 110 Day 28-1500:16 matio allocation-size-too-bi

27 Day12-23:0230 matio out-of-memory 11 Day28- 1844553 freeimage  stack-buffer-overflow (read of size 129) at code location 0x0d3
28 Day12-23:2435 matio heap-buffer-overflow (read of size 45) at code location 0x766 112 Day28-2031:37 av null pointer dereference in libc

29 Day12-23:2441 matio allocation-size-too-big 113 Day28- 232417 ‘matio allocation-size-too-big

30 Day12-232506 matio stack-buffer-overflow (write of size 8) at code location 0x8a8 114 Day29- 163240 matio allocation-size-too-big

31 Day12- 232548 matio allocation-size-too-bi 115 Day 30 - 04:45:07 matio null pointer dereference in libe libe

32 Day12-23:2602 matio heap-buffer-overflow (read of size 65334) at code location 0x766 116 Day33- 012355 matio allocation-size-too-big

33 Day12-232651 matio on unknown address at code location 0xb15 117 Day 36- 034553 samba heap-buffer-overflow (read of size 1) at code location Oxe27
34 Day12 44 matio allocation-size-too-big 118 Day 40- 03:11:04 frecimage  out-of-memory

35 Day12-2338:23 ‘matio allocation-size-too-big 119 Day41- 040243 freeimage  allocation-size-too-big

36 Day12-23:40:26 matio allocation-size-too-big 120 Day 41-09:22:29 freeimage  allocation-size-too-big

37 Day 13- 00:00:42 matio allocation-size-too-big 121 Day 41-16:50:06 freeimage  out-of-memory

38 Day 13- 00:05:15 ‘matio calloc-overflow at code location 0x0b2 122 Dayd1-1856:14 freeimage  allocation-size-too-big

39 Day 13- 00:05:52 matio allocation-size-too-big 123 Dayd1-1937:24 freeimage  allocation-size-too-big

40 Day13-00:11:54 matio allocation-size-too-bi 124 Dayd1-2016:12 freeimage  out-of-memory

41 Day 13- 00:38:07 ‘matio heap-buffer-overflow (read of size 1) at code location 0x313 125 Day42- 061558 freeimage  allocation-size-too-big

42 Day13-0L16:44 matio allocation-size-too-big 126 Day42-07:1633 freeimage  allocation-size-too-big

43 Day13-0122:15 matio out-of-memory 127 Day 42-07:35:40 freeimage  heap-buffer-overflow (write of size 17) at code location 0x33f
44 Day 13- 025442 matio out-of-memory 128 Day42-21:10:28 freeimage  allocation-size-too-big

45 Day 13- 025655 ‘matio allocation-size-too-big 129 Day 43 - 08:25:40 image  allocation-size-too-big

46 Day 13- 03:01:08 matio allocation-size-too-big 120 Day 46 - 21:27:20 freeimage  allocation-size-too-big

47 Day 13- 06:35:26 matio allocation-size-too-big 131 Day 66 - 07:17:55 matio out-of-memory

48 Day13-07:25:46 ‘matio calloc-overflow at code location 0x0b2 132 Day 67 - 03:18:40 ‘matio null pointer dereference in libe

49 Day13-1025:13 atio calloc-overflow at code location 0x0b2 133 Day72- 134941 freeimage  allocation-size-too-big

50 Day 13- 11:40:48 clamav  heap-buffer-overflow (read of size 1) at code location 0x9ef 134 Day74-12:44:22 out-of-memory

51 Day13-121507 clamav  heap-buffer-overflow (read of size 1) at code location 0x9ef 135 Day76-19:27:22 freeimage  allocation-size-too-big

52 Day13-1231:10 clamay heap-buffer-overflow (read of size 1) at code location 0x9ef 136 Day76- 224825 freeimage  allocation-size-too-big

53 Day 13- 150159 matio allocation-size-too-bi 137 Day78- 165146 freeimage  allocation-size-too-big

54 Day13-21:06:27 ‘matio heap-buffer-overflow (read of size 321) at code location 0x638 138 Day78- 005515 freeimage  allocation-size-too-big

55 Day 14-01:00:09 matio heap-buffer-overflow (read of size 2130706432) 766 139 Day79-15:10:13 mruby allocation-size-too-big

56 Day 14-03:09:20 matio SEGV on unknown address at code location Oxede 140 Day 83 - 05:27:07 freeimage  allocation-size-too-big

57 Day14-0336:53 ‘matio SEGV on unknown address at code location 0x045 141 Day89-1216:04 freeimage  allocation-size-too-big

55 Day 14-0407:34 ‘matio SEGV on unknown address at code location 0x045 142 Day89-13:25:42 mruby allocation-size-too-big

59 Day 14 - 04:09:40 matio allocation-size-too-big 143 Day 99 - 07:22:49 xvid heap-buffer-overflow (read) at code location 0xe27

60 Day 14-06:05:41 matio SEGV on unknown address at code location 0x01a 144 Day 104121530 freeimage  allocation-size-too-big

61 Day 14-06:06:30 matio allocation-size-too-big 145 Day 104 - 19:21:47 freeimage  allocation-size-too-big

62 Day 14-06:58:44 matio SEGV on unknown address at code location 0x045 146 Day 105 - 10:10:12 xvid heap-buffer-overflow (read) at code location 0x5df

63 Day14-07:18:17 matio allocation-size-too-big 147 Day 109 - 123821 freeimage  allocation-size-too-big

64 Day 14-08:03:26 clamay  heap-buffer-overflow (read of size 1) at code location 0x9ef 148 Day 110 - 00:41:47 freeimage  allocation-size-too-big

65 Day 14-09:05:06 matio allocation-size-too-big 149 Day 110 - 08:22:12 freeimage  allocation-size-too-big

66 Day14-10:10:16 ‘matio SEGV on unknown address at code location 0x045 150 Day 116 - 00:50:46 freeimage  allocation-size-too-big

67 Day14-10:32:58 ‘matio heap-buffer-overflow (read of size 6) 766 151 Day 116 - 01:58:21 image  allocation-size-too-big

68 Day14-1034:36 matio out-of-memory 152 Day 117-01:07:36 freeimage  allocation-size-too-big

69 Day14-1127:58 clamav  heap-buffer-overflow (read of size 1) at code location 0x9ef 153 Day 117- 18:1426 freeimage  stack-buffer-overflow (read of size 243) at code location 0x0e2
70 Day14-1429:44 matio out-of-memory 154 Day 118 - 22:43:54 freeimage  heap-buffer-overflow (write of size 4) at code location 0x9af
71 Day 14-14:48:29 matio SEGV on unknown address at code location 0x01a 155 Day 119-07:59:29 freeimage  allocation-size-too-big

72 Day 14-15:43:07 ‘matio SEGV on unknown address at code location 0x0be 156 Day124-17:21:46 freeimage  allocation-size-too-big

73 Day 14-18:08:03 ‘matio allocation-size-too-big 157 Day 133 - 07:04:46 freeimage  out-of-memory

74 Day 14-20:57:41 matio heap-buffer-overflow (write of size 48) at code location 0x3a8 158 Day 140 - 20:16:49 freeimage  allocation-size-too-big

75 Day 14-21:53:07 matio heap-buffer-overflow (read of size 1) at code location 0x638 159 Day 140 - 2027:14 freeimage  allocation-size-too-big

76 Day 14-22:10:21 ‘matio allocation-size-too-big 160 Day 140 - 20:46:13 freeimage  allocation-size-too-big

77 Day 15-02:40:19 matio memepy-param-overlap 161 Day 140 - 214035 freeimage  allocation-size-too-big

78 Day15-07:54:55 matio allocation-size-too-big 162 Day 140 - 21:45:52 freeimage  allocation-size-too-big

79 Day15-09:54:52 ‘matio allocation-size-too-bi 163 Day 141- 112239 samba heap-buffer-overflow (read of size 1) at code location 0x5df
80 Day15-1023:37 matio heap-buffer-overflow (read of size 1) at code location 0x313 164 Day 142-15:18:34 clamay null pointer dereference in libc

81 Day15-10:47:01 matio SEGV on unknown address at code location 0x01a 165 Day 143 - 13:23:23 frecimage  global-buffer-overflow (read of size 9) at code location 0xSce
82 Day15-12:58:56 matio out-of-memory 166 Day 148 - 05:24:43 st ‘heap-buffer-overflow (read of size 3) at code location 0x051
83 Day16-07:57:21 capstone  global-buffer-overflow 167 Day 149 - 06:19:33 htslib out-of-memory

81 Day16-08:13:47 capstone  global-buffer-overflow 168 Day 152- 17:47:25 capstone  global-buffer-overflow

Table 6: Crash discovery log from FuzzINc@HoME’s public deployment. The code location is the lower 12 bits of the faulting program counter.
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