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Abstract—Heap randomization, in general, has been a well-trodden area; however, the efficacy of byte-granularity randomization has

never been fully explored as misalignment raises various concerns. Modern heap exploits often abuse the determinism in word

alignment, and modern CPU architecture better supports unaligned access (since Nehalem). Based on such new developments, we

conduct an in-depth analysis of evaluating the efficacy of byte-granularity heap randomization in three folds: (i) security effectiveness,

(ii) performance impact, and (iii) compatibility analysis to measure deployment cost. Security discussion is based on 20 CVE case

studies. To measure performance details, we conduct cycle-level microbenchmarks and report that the performance cost is highly

concentrated to edge cases depending on the L1-cache line. Based on such analysis, we design and implement an allocator suited for

byte-granularity heap randomization. On the negative side, our analysis suggests that byte-granularity heap randomization has high

deployment cost due to various implementation conflicts. We enumerate the problematic compatibility issues using Coreutils, Nginx,

and ChakraCore benchmarks.

Index Terms—Heap, exploit, unaligned access, randomization, allocator

Ç

1 INTRODUCTION

MEMORY corruption vulnerabilities arewidely exploited as
attack vectors. According to the recent statistics from the

Common Vulnerabilities and Exposures (CVE) database, the
majority of the arbitrary code execution exploits that have a
CVSS score greater than 9.0 are caused by heap-based vulner-
abilities such as use-after-free and heap overflow [32]. Recent
vulnerability reports [36] also suggest thatmost of the usefully
exploitable bugs are typically caused by heap corruptions. So
far, numerous heap randomization approaches have been
proposed. However, some remnants of vulnerabilities still
survive due to their exploitation primitives. In modern heap
exploit attacks, type confusions between integer-pointer or
float-pointer are often utilized [26], [27]. To trigger such confu-
sion, a crafted object/pointer spraying technique is required.
These advanced heap exploitation techniques often take
advantage of the fact that although the overall heap layout is
unpredictable, the pointer-width alignment of any heap
chunk is deterministic (the chunk address is always divisible
bysizeof(void*)).

Several heap-related defense approaches, including [37],
[38], [39], [51], [56], [57], [60], have provided insights into
making the heap exploitation more difficult by effectively

randomizing the heap layout. However, previous methods
avoids reducing this randomization granularity into byte-
level as it breaks the “CPU word alignment” for heap mem-
ory access. For example, [57], [68] and [39] randomizes the
heap layout by prepending a random sized dummy mem-
ory space between each heap chunk; however, the random-
ized distance between heap chunk is guaranteed to be
divisible by sizeof(void*) to respect the CPU word
granularity memory alignment. In the case of [43], the paper
suggests the importance of reducing the memory allocation
granularity1 for heap defense. However, the paper consid-
ers the pointer-width granularity (8-bytes) as the smallest
possible allocation in their discussion. The main reason why
previous work avoided byte-granularity randomization is
that because modern hardware and software are often opti-
mized to specific memory alignment.

Recently, major CPU vendors such as Intel and ARM
recently started putting efforts to support arbitrarily mis-
aligned (byte-granularity) memory access from hardware
level [42], [46]. Based on such development, we conduct in-
depth analysis on the efficacy of byte-granularity heap ran-
domization in three folds. First, we analyze the security
impact of adopting byte-granularity randomness to heap
chunks. Second, we conduct cycle-level microbenchmark
and memory intensive application benchmarks to reveal the
performance impact of byte-granularity randomization.
Finally, we analyze various compatibility problems that
byte-granularity randomness can cause.

For evaluation purpose, we design and implement an
allocator which adopts byte-granularity randomness to
heap chunk allocation with specific exception handling and
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1. To quote the paper: “memory managers at all levels should use
finer memory allocation granularity for better security”
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optimization. We name our allocator “Randomly Unaligned
Memory Allocator (ra-malloc)”. Performance regarding
chunk management and allocation speed of ra-malloc does
not outperform traditional heap allocators. However, ra-
malloc leverages architecture specifics and reduces memory
access penalty of byte-granularity heap randomization.

To measure the performance impact of ra-malloc, we
apply various allocators (ra-malloc, tcmalloc, dlmalloc,
jemalloc and ottomalloc) to SPEC2006 and compare their
benchmark results. To investigate compatibility problem of
byte-granularity heap randomization, we use Coreutils util-
ities test suite, Nginx web server test suite, and ChakraCore
JavaScript engine test suite. We discuss the various issues
regarding compatibility in Section 5 and summarize nega-
tive analysis results as limitations in Section 6.

The contributions of this paper include the followings:

� This is the first work that fully analyzed the pros and
cons of byte-granularity heap randomization.

� We conducted in-depth experiments and security
analysis caused by byte-granularity randomness.

� We design and implement a memory allocator (ra-
malloc) that optimizes the byte-granularity heap ran-
domization on recent Intel architecture.

2 SECURITY ANALYSIS OF BYTE-GRANULARITY

HEAP RANDOMIZATION

In modern heap exploitation, achieving direct manipulation
of code pointer is unlikely due to the state-of-the-art com-
piler defenses such as VTGuard, pointer encryption, and
VT-read-only checks [62]. As a result, the surviving rem-
nants of heap exploitation techniques often target data
pointer and involve convoluted steps of pointer manipula-
tion to complete the exploit. The key procedure is control-
ling the program to use the attacker-crafted non-pointer
values as an intact pointer. Exploitation of typical heap vul-
nerabilities such as use-after-free, out-of-bounds access
(including heap overflow), type confusion and uninitialized
access mostly involves multiple steps of invalid pointer dere-
ference to trigger information leakage, achieve arbitrary
memory access and finally, execute arbitrary code.

Traditional heap spray places a huge amount of NOP-
sled and shellcodes into predictable heap address2 as direct
code pointer manipulation was easy, however, the goal of
modern heap spray is more focused on placing crafted
pointers around out-of-bounds heap area. Because heap
spray allows an attacker to control a broad range of heap
region, malicious pointer-spraying could be a threat with-
out any (for 32-bit address space) or with only limited (for
64-bit address space) information disclosure. In this section,
we first clarify the attack model and assumptions, then dis-
cuss the security effectiveness of byte-granularity heap ran-
domization in three terms: (i) successful triggering of heap
vulnerability (ii) information leakage attacks (iii) bypassing
byte-granularity heap randomization.

2.1 Successful Triggering of Heap Vulnerabilities

Any triggering step of heap vulnerabilities that occurs due
to out-of-bounds access3 are affected by byte-granularity
heap randomization. For example, the first use of dangling-
pointer in use-after-free guarantees to crash any application
with 87.5 percent (75 percent in 32-bit) probability as there
are eight (four in 32-bit) possible outcomes of the misinter-
preted pointer alignment.

Consider the exploitation steps of use-after-free: (i) an
object is freed and a dangling pointer is created, (ii) the
attacker places a crafted object around the dangling-pointed
memory region, and (iii) the program uses the dangling
pointer as if the original object member variables (pointer
member variables) are still intact thus using attacker’s
crafted pointer. These steps imply that there are two inde-
pendent heap chunk allocations around the dangling-
pointed heap area. Although the address of each heap
chunks is random, if the allocation granularity is bigger
than the pointer-width, an attacker can spray the heap and
overlap the fake object and dangling-pointer thus success-
fully trigger the use-after-free without pinpointing the exact
memory addresses.

This effectiveness can be described by depicting a simpli-
fied example. Fig. 1 depicts an example case of dereferenc-
ing a dangling pointer (to access a pointer member variable)
after attacker launches a pointer-spray attack. For simplic-
ity, let’s assume attacker wants to hijack a pointer into
0xdeadbeefcafebabe and there are five unpredictable
cases of dangling pointers which will be randomly decided
at runtime.

In Fig. 1a, an attacker can hijack the target pointer mem-
ber variable with a very high chance because the heap ran-
domization follows word-granularity. The attacker can
spray the eight-byte sequence “DE AD BE EF CA FE BA BE”
sufficiently long to defragment the heap region and bypass
the randomization. However in Fig. 1b, the randomization
is byte-granularity thus the attack fails with 87.5 percent
probability regardless of the spray; unless the pointer is
composed with same bytes (we discuss this issue at the end
of this section).

The same effectiveness can also be observed from heap
overflow situation. In general, randomizing the distance
between the source of the out-of-bounds access (buggy
buffer) and the adjacent heap object is an effective mitiga-
tion approach against heap overflow attack. However, if the
heap allocation granularity is bigger than the width of the
pointer, the effectiveness of this approach can be reduced
regarding pointer manipulation. This can be demonstrated
with a hypothetical situation in which the attacker tries to
hijack a pointer value inside an adjacent heap object.

The effectiveness of byte-granularity heap randomization
is not specific to particular heap vulnerabilities. We empha-
size that any exploitation step which involves the use of crafted
pointer upon out-of-bounds heap access is affected. For example,
exploitation of heap overflow, uninitialized heap access vul-
nerability also involves out-of-bounds heap access [8], [13]
thus affected by byte-granularity heap randomization.

2. Heap address prediction via massive heap spray is feasible under
32-bit address space layout randomization. In case of 64-bit address
space layout randomization, heap spray becomes equally feasible if a
heap segment base address is exposed.

3. In this paper, out-of-bounds access indicates memory access that
crosses heap chunk bound.
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So far, the security effectiveness of byte-granularity
heap randomization seems small, as one out of eight (or
four) triggering attempts will succeed. However, this
probability of single dereferencing is not the probability
of a successful attack. Modern heap exploitation usually
involves multiple combination and repetition of such
bug triggering. According to Google Project-Zero, suc-
cessful exploitation of CVE-2015-3077 required up to 31
times of pointer confusion. As heap exploitation involves
multiple uses of crafted pointers, the defense probability
will increase exponentially. However exact calculation of
defense probability based on a number of the crafted
pointer is unrealistic as modern heap exploitation usu-
ally achieves complete information leakage capability in
the middle of the exploitation. In next subsection, we
discuss the effectiveness of byte granularity heap ran-
domization considering information leakages.

2.2 Information Leakage

Information leakage vulnerabilities are typically discovered
in software that implements ECMAScript [29] parsers includ-
ing ChakraCore, V8, ActionScript, and Spider Monkey. It is
well established that complete disclosure of memory renders all
the randomness-based exploit defenses ineffective. In this
subsection, we analyze the impact of byte-granularity heap
randomization over various types of information leakage
attempts.

According to previous insights of past research, there are
information disclosure attacks based on side-channels
which do not leverage memory corruption [30], [41], [45],
[52], [54], [63], [64], [67]. Memory randomization does not
affect such attacks. However, some information disclosure
attacks are based on memory corruption. In such case, byte-
granularity randomization could affect information leakage
as well. We analyzed the impact of byte-granularity ran-
domization for such cases.

One of the information leakage primitive found in real-
world CVEs is often achieved by OOB (Out-Of-Bound read/
write) vulnerability. Such OOBs can be divided into several
types: (i) direct disclosure of arbitrarymemory contents with-
out involving use of fake pointer, (ii) partial disclosure of
non-arbitrary memory, and (iii) indirect disclosure of mem-
ory contents. Example case of (i) would be literal array (e.g.,
string) based OOB [3], [10]. If the OOB is achieved by such
size-corrupted array (e.g., string with negative size) and the
memory content of size-corrupted array is directly readable
by the attacker, byte-granularity heap randomization has no
benefit over existing coarse-grained heap randomization.
Attacker can read any heap region starting from the OOB
heap by giving arbitrary substring index and length (e.g.,
leakedarray.substr(0x7fff4000 - [leakedarray

address], 100) to read 100 bytes from arbitrary address
0x7fff4000).

On the other hand, in the case of (ii) and (iii), heap alloca-
tion granularity can affect the information disclosure
attempt. For example, size-shrink based OOB [12] allows an
attacker to overread out-of-bound heap buffer. In such case,
attacker can read memory contents adjacent to the end of
heap buffer. In order to achieve complete memory access
capability, an attacker hijacks an object that has backstore
pointer.4 Due to heap isolation, spraying arbitrary object at
arbitrary heap segment is not straightforward. Fig. 2 illus-
trates such an example case. From Fig. 2, information leak
requires fake pointer spraying in case attacker cannot place
a backstore pointer (ptrB in the figure) inside directly
accessed out-of-bound heap region.

In case the OOB is based on object array, the attacker can-
not directly read the memory contents because the type of
array element is not a literal but an object. ECMAScript

Fig. 1. Simplified example cases of dereferencing a dangling pointer for Use-After-Free under pointer-spray attack (assuming 0xdeadbeefcafe-

babe is the crafted pointer). The box in the middle represents dangling pointed object and each row indicates pointer-type member variable. Assume
there are five possible dangling pointers due to randomization. For better visualization, the memory dump is shown in big-endian format.

4. A leaf pointer that ultimately being used for reading/writing
memory. (e.g., “DataView” in Chrome V8).
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parsers do not provide any syntax that dumps the raw
memory contents of an object. Therefore, an additional trick
is required to turn such OOB into working information leak-
age. Based on our analysis, the attacker can spray fake
objects around out-of-bound heap area and making the
application to use the fake object. Use of such fake object
triggers further type confusions and enables the attacker to
hijack a backstore pointer. Crafting out-of-bound heap
memory layout for proper pointer confusion often requires
predictable memory alignment. Fig. 3 illustrates such case
(CVE-2016-0191) where the information leakage is achieved
via object spraying technique. In this exploitation, attacker
achieves information leakage primitive by making the
ChakraCore confuse the reference of the pointer inside
JavaScriptDate object as the pointer of a DataView

object. The exploitation repeats spraying the fake Data-

View object and using the dangling pointer of JavaS-

criptDate object until two pointers are confused.

In the case of CVE-2016-1677 [19], class type confusion
vulnerability enables an attacker to read lower 16 bits of a
pointer value inside a particular object. This leaked informa-
tion (lower 16 bits of a pointer) can be used to significantly
reduce the entropy of ASLR for the memory segment
pointed by the partially leaked pointer.

In the case of CVE-2016-1665 [18], a miscalculated index
value for an object array (Node array in V8) allows out-
of-bound object dereferencing that is outside the array. In
order to get information leakage with this bug, sophisti-
cated heap spraying is required to place a fake pointer adja-
cent to this array, which allows him/her to construct his/
her own Node object. Later, the program references a short
(2-byte word) pointer inside the attacker’s fake object to
decide a branch path. In such a case, the branch path of the
program is decided by a fake value that is dereferenced by a
fake pointer. Similarly, in [20], an attacker is allowed to
decide the program control flow depending on the 1-byte
data read from the out-of-bounds heap. In [18] and [20], a
side channel attack can be applied in order to reveal the ref-
erenced bytes as the control flow is affected by such values.

To summarize the analysis, byte-granularity heap ran-
domization does not affect information leakage which
directly reveals arbitrary memory contents without involv-
ing fake pointers. However, if the information leakage is (i)
dependent on illegal use of fake pointers, or (ii) partial,
byte-granularity heap randomization hinders the attack.

2.3 Bypassing Byte-Granularity Randomization

Byte granularity heap randomization guarantees four
(or eight) possible cases against any pointer manipulation
due to out-of-bounds access. In turn, an attacker who
wishes to hijack a single pointer (or any word-unit data),
say, with a value of 0x1122334455667788, stands a
87.5 percent chance of failing in his/her overwrite attempt
with pointer spraying (i.e., 0x8811223344556677,
0x7788112233445566, etc). Thus, a plausible way of

Fig. 3. Information leakage steps of CVE-2016-0191 against Edge.
Attack is dependent to heap randomization of pointer-width allocation
granularity.

Fig. 2. Achieving arbitrary read/write primitive from partial out-of-bound read/write vulnerability. If the backstore pointer (ptrB in this case) is inside the
out-of-bounds heap area, byte-granularity heap randomization can be bypassed. However, if the backstore pointer and out-of-bound heap is at differ-
ent heap segments, fake pointer spraying is required.
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bypassing byte granularity randomization is by construct-
ing the entire chain of the exploit payload with byte-shift-
independent values only. A byte-shift-independent value is a
word (or doubleword) composed of the same bytes (e.g.,
0x9797979797979797 in a 64-bit system or 0x35353535
in a 32-bit system).

At this point, the byte-shift-independent values are
always invalid virtual addresses in current 64-bit system. In
32-bit system, such values can be predictable and valid
address especially if the attacker allocates a sufficiently large
region of the memory (i.e., allocating the lower 1-GByte of
memory in a 32-bit address space will include an address of
0x35353535). It could be a threat to byte-granularity heap
randomization if attacker can place the crafted chunk at such
address and construct the crafted pointers with byte-shift-
independent values. Virtual addresses such as 0x35343534
make the same effect with 50 percent probability. To address
this issue, 32-bit version of ra-malloc provides configuration
for avoiding such addresses similarly as EMET [44]. The dif-
ference between EMET and 32-bit ra-malloc is that while
EMET initially pre-allocate (mmap) blacklist pages, 32-bit ra-
malloc checks the address at allocation time and re-allocates
the chunk. We compiled 32-bit version of SPEC2006 suites
and tested performance impact of this algorithm. The algo-
rithm caused up to 3 percent overhead in 32-bit SPEC2006
benchmark. Detailed algorithm description for avoiding
such addresses is described in Section 4.

3 CASE STUDIES

Quantifying the probability of successful heap vulnerability
exploitation is an arduous process and furthermore, prov-
ing the correctness of such probability (of successful exploi-
tation) is practically impossible. The claim we can make is
that the byte-granularity heap randomization foils the inter-
chunk use of fake pointers with 75 Percnt in a 32-bit system
and 87.5 Percnt in a 64-bit system. Here we discuss the
necessity of fake pointer spraying and pointer-width alloca-
tion granularity in real-world heap exploit cases.

To analyze the security effectiveness of byte-granularity
heap randomization, we investigate publicly disclosed heap
memory corruption vulnerabilities [1], [2], [4], [5], [6], [7], [8],
[11], [13], [14], [15], [16], [17], [21], [22], [23], [24], [25], [26],

[27] that enabled attackers to achieve information leakage or
arbitrary-code-execution against various software mostly
from Pwn2Own contest andGoogle bug bounty program.

Throughout case studies, four of the attacks [1], [2], [5],
[27] were reproduced and byte-granularity heap randomi-
zation was partially applied5. Rest of the case studies are
conducted based on debugging minimal proof-of-concept
codes with documented information. We describe details of
reproduced cases then summarize the overall results.

CVE-2013-2729 is a heap vulnerability that existed in
Acrobat Reader X. An integer overflow vulnerability occurs
while parsing a bitmap image embedded in a PDF docu-
ment, which eventually leads to out-of-bound heap access.
As the full exploit code is available on the Internet, we
reproduced the entire attack under debugging environment
to see how byte granularity heap randomization hinders the
exploitation. The PoC reliably achieves arbitrary code exe-
cution against 32-bit Acrobat Reader X in Windows 7; how-
ever, after we adopt byte-granularity randomness for heap
allocation6, the PoC exploit constantly crashes due to dere-
ferencing the invalid pointer (incorrectly aligned due to
byte granularity randomization). However, the program
never crashed while processing benign PDF documents. For
example, the debug screen Fig. 4a shows an example crash
due to out-of-bound heap pointer access (ESI is holding an
invalid fake pointer). The value of ESI is 0xF3070F4C,
which is a 1-byte shifted value from the intended one
(0x070F4C33). This occurs because of the unpredictable
change in the pointer-width alignment between the out-of-
bound buffer and the target heap chunk. Although this sin-
gle step of pointer hijacking could be successfully operated
in 25 Percnt of the cases, the success probability of first
information leaking step (leaking a heap pointer) was less
than 1 Percnt due to multiple needs of out-of-bound fake
pointer access.

Fig. 4. Reproducing CVE-2013-2729 (Acrobat Reader) and CVE-2013-0025 (Internet Explorer) exploitation for case study.

5. Adopting byte-granularity heap randomization to legacy binary is
not fully applicable except old version of Acrobat Reader due to com-
patibility issues which will be discussed later. In such case, we applied
byte-granularity randomization only against exploit-relevant objects by
identifying the object based on its size and allocation site for analysis.
Details of such issues will be discussed in Section 4

6. by hooking the heap allocation APIs in the AcroRd32.dll import
address table
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CVE-2013-0025 is a use-after-free vulnerability that
existed in Internet Explorer 8. We reproduced the triggering
of use-after-free with proof-of-concept code and debugged
the vulnerability. With this vulnerability, a CParaElement

object is used by referencing a CDoc object after it has been
freed. The dangling pointer of CDoc dereferences the
pointer of CParaElement; then, the pointer of CParaEle-
ment dereferences the pointer of the C++ virtual table.
Finally, the pointer of the virtual table dereferences a func-
tion pointer. From the debugging screen of Fig. 4b, there are
three successive pointer dereferencing before EIP is
changed (e.g., call dword ptr [eax+170h]). The PoC
exploit failed the first step of pointer hijacking “mov esi,

[eax],” which was supposedly aimed at hijacking the
pointer of CParaElement into 0xBEBAFECA (we chose
this value for demonstration), which is a sprayed fake
pointer value to point fake CParaElement object.

At the bottom right of the debug screen of Fig. 4b, there is
an allocation log that reports that a heap chunk was yielded
at 0x047c128a (2-byte broken alignment). However, the
value of the dangling pointer is 0x047c1288 (0-byte bro-
ken alignment). Because the randomly broken alignment of
the dangling pointer differs from that of the recycled
pointer, the hijacked value of ESI becomes 0xFECA0000

(the two zero bytes are remnants from the original object),
which was not the intended value. To hijack the EIP with
this use-after-free, more fake pointer spraying attacks are
required. This vulnerability does not give the attacker any
information leakage. Therefore arbitrary code execution can
be achieved under two circumstances: (i) attacker can brute-
force the address with extensive heap spray in 32-bit
address space, (ii) attacker achieves information leak via
other independent vulnerability. If the information leakage
is enough to disclose entire memory, the randomness is use-
less, however, if the address prediction is based on exten-
sive heap spray or partial information leakage (leaking few
pointers) byte granularity heap randomization becomes
effective to hinder pointer hijacking.

CVE-2017-5030 is a V8 out-of-bound access vulnerability
which gives information leakage. In this vulnerability, an
attacker can achieve literal based information leakage, thus
reveal the out-of-bound accessed heap memory contents
directly. Using this initial information leakage, the attacker
gets useful information which will be later used. Partial

information leakage itself cannot achieve arbitrary code exe-
cution. Thus attacker triggers heap spraying and pointer con-
fusion techniques to take control over a backstore pointer.
Using the hijacked backstore pointer, the attacker places
shellcode inside JIT memory segment (which is RWX) and
triggers the code execution. Initial information leakage in
this exploit does not involve out-of-bound fake pointer
access, and thememory content is exposed directly as literals
(float type array). Therefore byte-granularity heap randomi-
zation has nomitigation effect against this vulnerability.

Thememory scanning steps (analyzing the leakedmemory
contents) in this exploit involves pointer identification tech-
nique based on 8-byte alignment. The essence of this tech-
nique is looking up the least significant bit of each 8-byte
chunks assuming they are word-aligned. If the least signifi-
cant bit of leaked word is set, attacker assumes it as a pointer
(V8 stores pointer in this manner). Fig. 5b Shows memory
dump of V8 and the leaked memory contents from Chrome
debugging console while the exploitation is in progress.
From the figure, attacker assumes the leaked value
0x000002d2e9106a41 (highlighted with a box) is a pointer
based on the observation that least significant byte among the
8-byte is an odd number. The adoption of byte-granularity
heap randomization breaks this information leak analysis as
an attacker can no longer assume the 8-byte pointer alignment
of out-of-bound heap region. Under the byte-granularity heap
randomization, information leakage analysis requires con-
crete sentinel such as attacker crafted length value.

CVE-2012-4792 is a use-after-free vulnerability that existed
in Internet Explorer 8. The vulnerability is caused by reusing a
dangling pointer of CButton object after it has been freed. The
button object referenced by a dangling pointer in CVE-2012-
4792 has a size of 0x86 bytes, and the use-after-free logic de-
references this dangling pointer to retrieve VPTR inside the
object. The proof of concept (PoC) exploit code hijacks the
VPTR pointer inside EAX to 0xBEBAFECA (the little-endian
representation of byte stream CA FE BA BE). The exploit code
for 32-bit environment works reliably under randomized heap
(under ASLR) due to pointer spraying. However, after byte-
granularity heap randomization is applied, 75 Percnt of exploit
attempt fails to hijack the VPTR as intended. Fig. 5a shows the
debugging screen and memory allocation log trace of Internet
Explorer 8 while the PoC of CVE-2012-4792 is being triggered.
From the figure, the allocation request for the attacker’s data

Fig. 5. Reproducing CVE-2012-4792 (Internet Explorer) and CVE-2017-5030 (Chrome) exploitation for case study.
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yields memory address 0x00323bbb (3-byte distance from
pointer-width alignment), which has a different alignment to
that of the dangling pointer 0x00323bba (2-byte distance
from pointer-width alignment). Because of the discrepancy
among these two memory address, the hijacked pointer from
“mov eax, [edi]” instruction becomes 0xBAFECAB0. The
lower byte 0xB0 is the remnant from the original chunkwhich
is not the value controlled by the attacker.

According to our analysis, 32-bit applications often
bypassed ASLR by spraying extensive amount of fake
pointers [1], [2], [5], [8], [17], [22], [24]. In such cases, byte-
granularity heap randomization had high impact for neu-
tralizing the successful exploitation. However, heap corrup-
tion based on class type confusion vulnerabilities [4], [25]
were not affected by byte-level allocation granularity
because such errors are caused by two different interpreta-
tion against the same original object. For example, assuming
there is an object with member A (pointer type) and B (inte-
ger type), type confusion error in our evaluation makes the
program to think object member B as pointer. Therefore the
fake pointer, in this case, is allocated with intact pointer A at
the same time; thus shares equally changed memory alignment.

Cases such as [7], [25], [26], [27] achieved information
leakage primitive without using fake pointers. Similar cases
such as [6], [13], [15], [16], [23] also achieved information
leakage primitive however it required multiple use of fake
pointers during the process. Finally, in case of local-privi-
lege-escalation (LPE) attacks [11], [14], [21], the efficacy of
byte-granularity heap randomization was lower than we
anticipated as exploitation steps involving the use of fake
pointers were relatively shorter than other cases. Table 1
summarizes overall analysis results.

4 PERFORMANCE ANALYSIS OF BYTE-
GRANULARITY HEAP RANDOMIZATION

As byte-granularity heap randomization inevitably involves
CPU-level unaligned or misaligned memory access, we start

this section by discussing some backgrounds regarding the
unaligned access and analyze our findings in the perfor-
mance and compatibility such as the atomicity and the align-
ment fault issues involved in the misaligned access. Based on
microbenchmark analysis, we design a new memory alloca-
tor ra-malloc for efficient byte-granularity randomization.
We further show in-depth testing results on ra-malloc using
various benchmarks.

4.1 Unaligned Memory Access

The term alignment can be usedwithmany units such as page
alignment, object alignment, and word alignment. In this
paper, the term alignment specifically refers to the CPU word
granularity alignment. Unaligned memory access can be
observed in special cases in an Intel-based system (e.g.,
#pragma pack(1) in the C language, x86 GLIBC I/O buffer
handling). However, memory accesses are always encour-
aged to be aligned at multiples of the CPU word size. The
main reason stems from the limited addressing granularity of
the hardware. In general, CPU architectures feature a mem-
ory bus line with 8-byte addressing granularity; therefore,
the retrieval of memory at an unaligned address requires
exceptional handling from the hardware viewpoint. Han-
dling such unaligned memory access may involve various
performance penalty issues such as a possible delay of store-
load forwarding, cache bank dependency, and cache miss.
The major penalty induced by unaligned memory access is
closely related to the increased number of L1 cache misses.
Because the CPU fetches memory contents from a cache with
cache line granularity, unaligned memory access that crosses
the boundary of two separate cache lines causes both cache
lines to be accessed to retrieve a single word, causing a
performance penalty.

Other than performance, unaligned memory access also
raises concerns regarding memory access atomicity. Atomic
memory access is a critical issue in concurrent software
development. Multithreaded applications utilize various

TABLE 1
Summarized Result of Case Study

# CVE # Bug Description Attack Target Remarks

1 CVE-2013-2729 out-of-bound Acrobat Pro (32bit) Pointer Spray
2 CVE-2015-2411 use-before-init IE11 (32bit) Pointer Spray
3 CVE-2016-0191 use-after-free Edge (64bit) Pointer Spray
4 CVE-2016-1653 JIT compiler bug Chrome (32bit) Pointer Spray
5 CVE-2016-1857 use-after-free Safari (32bit) Pointer Spray
6 CVE-2016-5129 out-of-bound Chrome (32bit) Pointer Spray
7 CVE-2012-4792 use-after-free IE8 (32bit) Multiple Pointer Corruption
8 CVE-2013-0025 use-after-free IE8 (32bit) Multiple Pointer Corruption
9 CVE-2014-3176 out-of-bound Chrome (32bit) Multiple Pointer Corruption
10 CVE-2016-0175 use-after-free Windows Kernel Multiple Pointer Corruption
11 CVE-2016-0196 use-after-free Windows Kernel Multiple Pointer Corruption
12 CVE-2016-1017 use-after-free Flash Player Multiple Pointer Corruption
13 CVE-2017-5030 out-of-bound Chrome (64bit) Information Leak Analysis
14 CVE-2015-1234 heap overflow Chrome (32bit) Non-Pointer Corruption
15 CVE-2017-2521 out-of-bound Safari Non-Pointer Corruption
16 CVE-2016-1859 use-after-free Safari Non-Pointer Corruption
17 CVE-2013-0912 type confusion Chrome (32bit) In-bound Corruption
18 CVE-2017-0071 type confusion Edge (64bit) In-bound Corruption
19 CVE-2016-1016 use-after-free Flash Player None
20 CVE-2016-1796 heap overflow OSX Kernel None
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types of synchronization primitives such as mutex and sem-
aphore. The key primitive of critical section (protected by
the lock) is that the execution should be atomic from the
perspective of each thread. Unaligned access raises concerns
when the application uses thread synchronization, lock-free
algorithms, or lock-free data structures, which relies on
instruction-level atomicity such as the InterlockedCom-

pareExchange() function. Because single unaligned
memory access can split into multiple accesses at the hard-
ware level, the atomicity of memory access may not be
guaranteed.

In fact, ARM architecture does not support such atomic-
ity for unaligned access. Even recently, compare-and-swap
(CAS) instructions in ARM (e.g., ldrex, strex) fail to
operate if the target memory operand is unaligned. This is
the major reason we conclude byte-granularity heap ran-
domization is yet infeasible in ARM architecture. However,
Intel microarchitecture (since P6) supports atomicity for
such instructions even if the memory address is arbitrarily
misaligned [55]. For example, CAS instructions of Intel ISA
(e.g., lock cmpxchg) maintains memory access atomicity
in all cases. The Intel official manual states that atomicity of
lock is supported to arbitrarily misaligned memory.

Another important issue regarding unaligned memory
access is the alignment fault. An alignment fault (which raises
SIGBUS signal in Linux) occurs in the event of unaligned
data memory access, depending on the CPU configuration.
There are two configuration flags regarding the alignment
fault in the Intel architecture, namely the AM bit in the sys-
tem CR0 register and the AC bit in the EFLAGS register.
Unless such bits are enabled together, Intel architecture
does not raise an alignment fault. Table 2 summarizes the
default configuration of these registers in well-known oper-
ating systems.

However, there is an exception that raises an alignment
fault regardless of such configuration. In the case of the Intel
SSE [35] instruction set, an instruction such as MOVNTQDA

raises an alignment fault if the target memory operand
address is misaligned at a 16-byte boundary. Normally, an
arbitrary heap memory address has no guarantee to be 16
byte aligned in general. Therefore, codes that use SSE
instruction usually do not assume that the given memory
address for SSE operand will be 16-byte aligned. The pre-
processing codes of SSE instruction checks the address
alignment and properly handles the 128-bit misaligned
memory portion. However, some of the compiler optimiza-
tion cases (e.g., Clang -O3) predicts the chunk alignment
and raises problem. If such cases are rare, one solution
could be ra-malloc installs alignment fault handler

and catches such exception to emulate the operation. This

emulation method is observed in ARM Linux kernel to han-
dle unaligned access. We discuss this limitation with other
details regarding the compatibility conflicts.

4.2 Microbenchmark for Unaligned Access

Unaligned access is often observed under Intel-based system.
In recent Intel microarchitectures, the performance penalty of
unaligned access is being reduced since Nehalem [65]. Here,
we show microbenchmark results regarding unaligned
access in recent Intel CPUs. All the per-instruction bench-
marks are composed of assembly code only, thus avoiding
any compiler dependency. We used ten different Intel x86-64
CPUs and measured the execution time of 134,217,728
(0x8000000) iterations for memory access instructions.

Performance measurement for instruction is dependent
on CPU pipeline state. To make the worst-case CPU pipe-
line, we used the same instruction for 48 consecutive times
and repeated such 48 consecutive execution using a loop.
The loop was composed of dec ecx and jnz, both of which
have lower instruction latency and reciprocal throughput
compared to the memory access instructions. This configu-
ration makes the worst-case CPU pipeline for memory
access. Fig. 6 shows the overall results. In the benchmark,
only the register and memory were used as target operands
(the immediates were not used since the instruction latency
was lower).

Throughout the evaluation we have discovered that the
performance penalty of unaligned access is severely biased
by rare cases, Fig. 6 is one of the experiment results. In
particular, the performance penalty of unaligned access is
0 percent if the accesses have entirely occurred inside the
cache line. In case the unaligned access broke the L1 cache
line, the performance penalty raised up to 30–70 percent. In
case the unaligned access broke the border of two 4-KByte
pages, the performance penalty was suspiciously high
(marked as red in the figure). In the case of REP-based
instructions (REP counter value is 256), the performance
penalty of unaligned access was mostly 20–30 percent. To
investigate the reason for the exceptionally high-perfor-
mance penalty of unaligned access that crosses page border,
we further used the PERF [34] benchmark and found that
the dominant factor is the increased cache miss. Table 3
summarizes the PERF benchmark conducted on the Intel i7-
6700 Ubuntu14.04 Server in a 64-bit environment.

Thus far, the microbenchmark in Fig. 6, suggests the per-
formance penalty of unaligned access in modern Intel archi-
tecture is high only when the access crosses the border of
two cache lines, and extremely high if the access crosses
two-page boundaries.

4.3 Ra-Malloc

According to the cycle-level instruction benchmark, unaligned
access in L1 cache line border and page border hindered the
performance. To avoid such memory access while enabling
byte-granularity heap randomization, we implemented a
byte-granularity randomized heap allocator suited for Intel
architecture. The goal of this allocator is to randomize the
heap chunk location with byte granularity while minimizing
the unalignedmemory access occurs at the border of L1 cache
line and page boundary.We implemented ra-malloc as part of

TABLE 2
Default Configuration of CR0.AM Bit and EFLAGS.AC Bit in

Major Operating Systems

OS CR0.AM EFLAGS.AC

Windows disabled disabled
Linux enabled disabled
OSX disabled disabled

Unless two bits are enabled at the same time, unaligned access does not raise an
alignment fault under the Intel architecture.

2244 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 18, NO. 5, SEPTEMBER/OCTOBER 2021

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 10,2022 at 17:09:58 UTC from IEEE Xplore.  Restrictions apply. 



Clang runtime, and wrote an LLVM pass for automated
allocator substitution.

To break the pointer-width allocation granularity, ra-malloc
additionally allocates sizeof(void*) additional memory
space in addition to original allocation request size to reserve
sizeof(void*) dummy space. After the allocation algo-
rithm selects the proper location for the new chunk, ra-malloc
yields the address which is randomly increased in bytes
between zero and sizeof(void*)-1.We note that the front-
end implementation (adding random numbers) for applying
byte-granularity randomization is a simple task and not our
main contribution. The main contribution of ra-malloc is mini-
mizing the impact of byte-granularity randomness based on
the previously discussed analysis and experiments.

The backend allocation algorithm of ra-malloc is mainly
based on jemalloc, where the heap space is organized as
multiple pools each holding objects of certain size class. How-
ever, ra-malloc considers two special cases: (i) chunk size less
than L1 cache line width, (ii) chunk size bigger than L1 cache
line less than page size. The size of L1 cache line (usually 64-
byte or 128-byte) is dynamically calculated during the allocator
initialization and page size is statically assumed to be 4 KB.
Once the allocation size is determined, ra-malloc searches for
an available chunk based on jemalloc algorithm with addi-
tional constraints that minimize the cases where chunks are
spanning across specialmemory borders.

For object allocation smaller than L1 cache line size
(including the additional space for randomization), ra-malloc
guarantees the memory location of the chunk to fit between
two L1 cache line borders thus eliminate any performance
penalty due to byte-granularity heap randomization. In case
the requested size is bigger than L1 cache line and yet smaller
than page, ra-malloc places the chunk between page

boundaries therefore avoid page boundary access. If the allo-
cation size is bigger than a page, there is no additional han-
dling as baseline allocator guarantees minimal border access
without any additional handling.

In case the application is 32-bit, ra-malloc uses address fil-
tering algorithm to handle the case of byte-shift-independant-
pointers Section 2 which could bypass ra-malloc. In case the
requested chunk size is larger than 0x01010101 bytes, it is
impossible to remove the byte-shift-independent address
from the virtual address mapping. However, in case the size
is smaller than 0x01010101 bytes, 32-bit ra-malloc ensures
there would be no byte-shift-independent address inside the
allocated chunk. The address checking algorithm is executed
after the chunk selection and right before delivering the
chunk to the application. If the chunk includes 32-bit byte-
shift-independent address (e.g., 0x11111111), ra-malloc
keeps the chunk internally and allocate a new chunk. The
algorithm for address inspection is as follow: (i) Calculate
most-significant-byte (MSB) of chunk start address. For
example, if the chunk address is 0x12345678, MSB is 0x12.
(ii) Check if MSB-only address (e.g., 0x12121212) is in
between chunk start and end. (iii) Increase MSB by one and
repeat step (i), and (ii).

Overall, the efficacy of ra-malloc would be optimal when
all objects are small (less than L1 cache-line would be ideal).
In reality, however, there are large heap objects. As the size of
an object becomes bigger, the chance of having a costly
unaligned access will increase even though ra-malloc mini-
mizes the occurrence of unaligned access. To investigate the
chunk size distribution in common applications in general,
we traced heap allocation and deallocation requests of Acro-
bat Reader and Internet Explorer. Fig. 7 shows the object size
distribution of live chunks whenAcrobat Reader and Internet
Explorer are running. The results are based on allocation/
deallocation/reallocation call trace. The left side graph in the
figure is the result of Internet Explorer after rendering the
Google index page, and the right side graph is the result of
Adobe Reader after rendering an ordinary PDF document.

Fig. 7 suggests that average heap chunk sizes are usually
small. Byte granularity heap randomization using ra-malloc
can fully avoid unaligned access penalty if all chunks are
smaller than L1 cache line length. In case the chunk is larger
than L1 cache line, it is inevitable to place a chunk across two

TABLE 3
PERFBenchmark Revealed theReason of Exceptionally High

Performance Penalty of UnalignedMemory Access that Crosses
the Border of two Pages, which is the IncreasedCacheMiss

Configuration # of Page-Faults # of Cache-Miss

Fully Aligned 45 7,647
Breaking Cache Line 46 7,527
Breaking Page Border 45 76,181

Fig. 6. Instruction-level microbenchmark result for Intel i7-6500 (SkyLake). The Y -axis represents the time (consumed seconds) for repeatedly exe-
cuting the unrolled instructions 134,217,728 (0x8000000) times. A stands for Aligned access, U stands for Unaligned access inside cache line, BC
stands for unaligned access on Border of (L1) Cache line, BP stands for unaligned access on Border of Pages. We ran the same benchmark for addi-
tional 9 Intel CPUs (Core-i5, Xeon, and so forth) and verified similar results in all cases.
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cache lines. In general, large heap chunks are requested to
allocate buffers that are often accessed by bulk-memory access
APIs such as memcpy. To verify the detailed impact of byte-
granularity heap randomization against memory intensive
APIs and large buffers, we analyzed various versions ofmem-
cpy implementations and conducted experiments. In particu-
lar, we ran 100,000 iterations of 1-Mbyte memory copy
operation using memcpy and compare the execution time
between two cases: (i) source and destination addresses of
1-Mbyte buffer are word-aligned, (ii) source and destination
addresses of the buffer is not word-aligned (byte-aligned).
This experiment isNOTdesigned tomeasure the performance
of unaligned access at the instruction level. Rather, the pur-
pose of this experiment is to measure the performance impact
and compatibility of unaligned access against bulk memory
accessAPIs. Table 4 summarizes the results.

In Table 4, the performance penalty is negligible in most
cases. However, a severe performance penalty is observed
from the case of i5-3570 FreeBSD 9.1; and ironically, the case
of i7-4980 Windows 8.1 shows negative performance penalty.
The cause of such peculiar results can be explained by the fact
that memcpy chooses a different version of implementation at
runtime, depending on various parameters such as the
address alignment, CPU features, size of the buffer, and so

forth. Aside from the case of FreeBSD 9.1, all version of mem-
cpy implementation detected the unaligned address and opti-
mized the performance by changing the alignment to be
aligned before beginning the actual memory access.

4.4 SPEC2006 Benchmark

To measure the performance impact and memory usage of
ra-malloc under memory intensive environment, we use
SPEC2006. The SPEC2006 benchmark suite did not suffer
compatibility problem after we applied ra-malloc. However,
measuring the performance impact of ra-malloc should be
carefully conducted because existing software convention-
ally assume word granularity heap alignment, therefore
some code could show unexpected behavior. In addition,
the program might use multiple allocators or custom alloca-
tors thus render the experiment inaccurate.

Before applying ra-malloc allocator, we analyzed the
source code of each benchmark suite to verify if the applica-
tion is suited for the experiment. In case of 400.perlbench,
custom heap allocator (Perl_safemalloc) was used
depending on the build configuration parameters. How-
ever, we confirmed that under our build configuration, the
benchmark used default glibc allocator (malloc). Similarly,
403.gcc had multiple custom allocators (xmalloc and

Fig. 7. Size distribution of allocated heap objects in Internet Explorer 8 and Adobe Acrobat Reader X.

TABLE 4
Unaligned Access Penalty (in Running Time) of Various Memcpy Implementations for 1-Mbyte Buffer

CPU OS Compiler and Library Environment Penalty Alignment Handling IfAA/IfUA

Intel i7-6700 Windows 10 VS2015 vcruntime140.dll (32bit) 5% yes REP/REP
Intel i7-6700 Windows 10 VS2015 (64bit) 15% yes SSE/SSE
Intel i7-4980 Windows 8.1 VS2010 msvcr100d.dll (32bit) �20% yes SSE/REP
Intel i7-4980 Windows 8.1 VS2010 msvcr100d.dll (64bit) 0% yes SSE/SSE
Intel i7-4980 Ubuntu 15.10 GCC 5.2.1 glibc-2.21 (32bit) 0% yes SSE/SSE
Intel i7-4980 Ubuntu 15.10 GCC 5.2.1 glibc-2.21 (64bit) 0% yes REP/REP
Intel i7-4980 Ubuntu 14.04 GCC 4.8.4 glibc2.19 (32bit) 10% yes REP/SSE
Intel i7-4980 Ubuntu 14.04 GCC 4.8.4 glibc2.19 (64 bit) 5% yes SSE/SSE
Intel i7-4980 OSX El Capitan Apple LLVM 7.3 (32bit) 0% yes SSE/REP
Intel i7-4980 OSX El Capitan Apple LLVM 7.3 (64 bit) 5% yes REP/REP
Intel i7-3770 Ubuntu 16.04 GCC 5.4.0 glibc-2.23 (64bit) 0% yes REP/REP
Intel i5-3570 Fedora20 GCC 4.8.2 glibc-2.18 (64bit) 0% yes SSE/SSE
Intel i5-3570 Debian7.5 GCC 4.7.2 glibc-2.13 (64bit) 0% yes SSE/SSE
Intel i5-3570 FreeBSD9.1 (32bit) GCC 4.2.1 bsdlibc (32bit) 100% no REP/REP
Intel i5-760 Ubuntu 12.04 Server GCC 4.6.3 (32bit) 0% yes SSE/SSE
Intel i5-760 Ubuntu 12.04 Server GCC 4.6.3 (64bit) 0% yes SSE/SSE
Intel i5-760 Windows 7 VS2010 msvcr100d.dll (32bit) 50% yes SSE/REP
Intel i5-760 Windows 7 VS2010 msvcr100d.dll (64bit) 0% yes SSE/SSE

“IfAA” stands for: Instruction used for Aligned Address. “IfUA” stands for: Instruction used for Unaligned Address.
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obstack) but we checked that under our build-environ-
ment, glibc allocator was used (obstack internally used
xmalloc, xmalloc internally used glibc allocator). Other
benchmark suites had no particular issues. All benchmark
suite programs were also dynamically analyzed to confirm
how many heap chunks are affected.

To change the allocator of SPEC2006withoutmanual code
rewriting, we made an LLVM pass ra-malloc and used
replaceAllUsesWith LLVM API to replace glibc C/C++
allocators such as malloc, free, _Znwj, and _ZdlPv. To
measure the performance impact, we applied ra-malloc as
well as other open-source allocators to SPEC2006. The open-
source allocators we used are dlmalloc (glibc), tcmalloc,
jemalloc, and ottomalloc. The benchmark was
conducted the under following environment: Intel(R) Xeon
(R) E5-2630 CPU with 128GB RAM, Linux 4.4.0 x86-64 and
Ubuntu 16.04. We used the glibc allocator as the baseline of
performance. Table 5 summarizes the results. The average
memory access overhead of ra-malloc is less than 5 percent
considering it is based on je-malloc. Naive adoption of byte-
granularity heap randomization against default libc heap
imposesmore than 10 percentmemory access overhead.

5 COMPATIBILITY ANALYSIS OF BYTE-
GRANULARITY HEAP RANDOMIZATION

Modern software and system implementations often assume
and require the heap allocation alignment to beword aligned.
Breaking this assumption can affect existing software in
various aspects. In order to adopt byte-granularity heap ran-
domization as practical defense, implementation conflicts
regarding heap alignment should be addressed. To analyze
the compatibility issues of byte-granularity heap randomiza-
tion, we conducted experiments with various applications/
benchmarks. Table 7 summarizes the analysis results regard-
ing various compatibility issues.

5.1 Coreutils

After substitutingCoreutils [47] glibc allocator to ra-malloc,we
ran the Coreutils test suite to see if there are compatibility
issues. In our initial experiment, 56 out of 476 Coreutils test
cases did not pass the test. It turned out that programs using
the following APIs crashed during execution: strdup,

strndup, getline, getdelim, asprintf, vasprintf,
realpath, getcwd. After analyzing the root cause, we found
that the reason was irrelevant to the byte-level allocation gran-
ularity. While our LLVM pass replaces the allocator calls in
Coreutils, allocator calls inside libc remained. Since the above-
mentioned libc APIs internally use default glibc allocator, two
allocators have conflicted. To handle this issue, we ported
such APIs to use ra-malloc allocator and extended the LLVM
pass to replace such API calls as well. After porting the above-
mentioned APIs for ra-malloc, all programs passed the test
without causing any compatibility issues.

5.2 Nginx

We ran Nginx test suite after applying ra-malloc allocator.
In our initial experiment, none of the 324 nginx-tests

suite passed the check. According to our analysis, the root
cause of the problem was the implicit assumption of heap
chunk alignment in Nginx implementation. Because the
code assumes that any heap object will be word-aligned, on
some occasions the program chose to store boolean infor-
mation inside the least significant bit (LSB) of pointers, per-
haps for performance reason. That is, instead of declaring a
boolean member in a structure or class, the boolean value is
saved in the LSB of the object pointer.

To handle this compatibility problem, we patched the
Nginx-1.13.12 source code as shown in Listing 1. After the
patch, all test suite passed the check. To evaluate the perfor-
mance impact of ra-malloc-compatible modification against
Nginx, we benchmarked the request throughput using
wrk [50]. The benchmark was repeated 10 times for each
case. Table 6 summarizes the benchmark result. According
to the benchmark, no significant performance degradation
was introduced by the modification.

TABLE 5
SPEC2006 Benchmark Results

Various allocators (including ra-malloc) are applied to each program. While other allocators respect word-alignment for all chunks, ra-malloc randomizes the
chunk location with byte-granularity.

TABLE 6
Performance Impact of the Nginx Patch

requests/sec

Average Standard deviation

Original 31362.20 565.90
Patched 31201.65 506.24
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5.3 ChakraCore

ChakraCore revealed interesting compatibility issues of byte-
granularity heap randomization. We applied ra-malloc to
ChakraCore then ran the standard test suite provided by the
ChakraCore. The initial result indicated that all test cases
failed to pass the check with the same error. The failure
seemed irrelevant to the test case.We found that the initializa-
tion of ChakraCore JSRuntime accessed ra-malloc-affected
chunk, however, the -O3 optimization of Clang aggressively
assumed the alignment of the heap chunk (assuming it would
be 128-bit aligned) thenused SSE instructions that require spe-
cific memory alignment such as movaps for fast execution.
After changing the optimization level to -O0, 351 over 2,638
test cases (interpreted variant) failed to pass the check.

Listing 1. Representative Parts of the Nginx Patch. LSB
Storage is Replaced by a New Member in ngx_

connection_s

diff –git a/src/core/ngx_connection.h b/src/core

/ngx_connection.h

index e4dfe58..5c15ca2 100644

— a/src/core/ngx_connection.h

+++ b/src/core/ngx_connection.h

@@ -119,6 +119,7 @@ typedef enum {

struct ngx_connection_s {

+ unsigned instance:1;

void *data;

ngx_event_t *read;

ngx_event_t *write;

diff –git a/src/event/modules/ngx_epoll_module.c

b/src/event/modules/ngx_epoll_module.c

index 76aee08..da948f2 100644

— a/src/event/modules/ngx_epoll_module.c

+++ b/src/event/modules/ngx_epoll_module.c

@@ -618,7 +620,8 @@ ngx_epoll_add_event(ngx_

event_t *ev, ngx_int_t event, ngx_uint_t flags)

#endif

ee.events = events | (uint32_t) flags;

- ee.data.ptr = (void *) ((uintptr_t) c | ev->
instance);

+ c->instance = ev->instance;

+ ee.data.ptr = c;

ngx_log_debug3(NGX_LOG_DEBUG_EVENT, ev->log, 0,

”epoll add event: fd:%d op:%d ev:%08XD”,

@@ -836,8 +841,7 @@ ngx_epoll_process_events

(ngx_cycle_t *cycle, ngx_msec_t timer,

ngx_uint_t flags)

for (i = 0; i < events; i++) {

c = event_list[i].data.ptr;

- instance = (uintptr_t) c & 1;

- c = (ngx_connection_t *) ((uintptr_t) c &

(uintptr_t) 1);

+ instance = c->instance;

rev = c->read;

Among the failures, 172 cases were caused due to SSE
instruction alignment fault and 176 cases failed due to the
assertion failure that explicitly requires word alignment for
heap pointers before further operation. Interestingly, three
cases failed due to time-out. After further analysis, we
found that the failure was due to futex system call failure.
Unlike pthread mutex, which is based on user-level lock
prefixed instructions, the futex is based on Linux kernel
system call which requires word-aligned address for its
parameter. Because of this, the test suite failed to operate
correctly as the system call raised an error. After finding
this issue, we investigated the current (4.x) Linux kernel
system calls to find a similar case. The futex was the only
one that caused the problem with byte-granularity heap
randomization. Overall compatibility analysis indicates that
byte-granularity heap randomization requires high deploy-
ment cost.

6 LIMITATION

ra-malloc for ARM. The performance impact of unaligned
access is a serious issue for RISC processors such as ARM. In
general, unaligned memory access is strongly discouraged in
RISC architectures.7 In fact, ARM architecture started to sup-
port hardware-level unaligned access for some instructions
(e.g., LDR) since ARMv6 [42]. To investigate the feasibility of
byte-granularity heap randomization in ARM, we conducted
per-instruction memory access benchmark against Cortex-A9
and Cortex-A17. Table 8 summarizes the result. According to
our analysis, ARMarchitecture sinceARMv6 indeed supports
hardware level unaligned access. However, the support is for
only two memory access instructions (LDR, STR) and high-
performance penalty is observed at every 8-byte address bor-
der regardless of L1 cache or page size. Instructions such as
LDM shows over 10,000 percent performance penalty for
unaligned access. The reason for such high penalty is due to
the lack of hardware support. Since the hardware is incapable
of executing LDMwith unalignedmemory operand, hardware
raises fault signal and kernel emulates the instruction. In case
of the VLDR, even emulation is not supported by the kernel.
Therefore the execution fails on unaligned memory operand.
Most importantly, unaligned memory operand does not sup-
port LDREX instruction which is required for instruction level
atomicity. For such reasons, ARMbased system is inappropri-
ate to consider byte-granularity heap randomization at this
point.

Brute Forcing Attack. Byte-granularity heap randomiza-
tion hinders the use of crafted pointer thus hinder exploits
which depends on crafted pointers. The use of each crafted

TABLE 7
Compatibility Analysis Summary

Application # failures Remarks

Coreutils 0/476 56 cases initially failed due to allocator substitution problem (fixed later)
Nginx 324/324 All cases failed due to least significant bit (LSB) of pointer utilization issue
Nginx (patched) 0/324 Re-factorization of LSB pointer issue made Nginx fully compatible
ChakraCore 172/2,638 Alignment Fault while using SSE (MOVAPS)
ChakraCore 176/2,638 Assertion failure (alignment check)
ChakraCore 3/2,638 Futex system call failure (unaligned parameter)

7. PowerPC architecture can have 4,000 percent penalty in the worst
case of unaligned access [28].
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pointer involves 75 percent of defense probability in a 32-bit
system and 87.5 percent in case of a 64-bit system. The
defense probability will exponentially increase in case sev-
eral crafted pointers are independently required for the
overall attack. However, even such probability is insuffi-
cient to stop repeatable brute-forcing attack. In general, an
invalid pointer dereference raises segmentation fault and
crashes the program therefore attack is not repeatable.
However, according to a previous work [48], there are spe-
cial cases in which program survives even under segmenta-
tion fault and allows to repeat the attack [9].

Side Channel Attack. With byte-granularity heap randomi-
zation, heap pointers do not follow word-granularity. In
average, 75 percent of heap pointers are not word-aligned.
Assuming if the attacker is somehow able to measure the
performance of dereferencing heap pointers precisely, she
might be able to tell that some of them are misaligned
around particular memory border. For example, the
attacker can guess that a heap pointer is spanning across
page boundaries while being unaligned if the access speed
is relatively slow. So far, we fail to find any useful attack
scenario by identifying such pointers. However, in theory,
this can be considered as a potential side channel attack
against byte-granularity heap randomization.

Implementation Conflicts. The adoption of byte-granularity
heap randomization creates various implementation conflicts
as discussed in Section 5. However, one of the correctness
problem among them is the use of LSB portion of heap pointer
assuming the pointer is word-aligned. In Section 5, we used
Nginx for discussion; however we also found this issue in
other applications as well. For example, Internet Explorer 11
uses the same implementation approach to mark the chunk
type (Isolation Heap). Any programming techniques that rely
on the assumption that the heap chunk has specific alignment can-
not be applied with byte-granularity heap randomization at
the same time. In addition, futex is currently incompatible
with ra-malloc as it requires a word-aligned address (other
4.x Linux system calls are not affected by alignment). Admit-
tedly, the implementation compatibility issues are the major
limitation for adopting byte-granularity heap randomization
in practice as it requires significant engineering effort. How-
ever, we believe this is not a fundamental limitation that
undermines theworth our research.

Information Disclosure Using Byte-Shift-Independent Non-
Pointer Values. Byte granularity heap randomization imposes
difficulty of hijacking pointers by breaking the sizeof

(void*) allocation granularity of randomized chunk alloca-
tion. As the result of byte granularity randomness, an attacker
cannot leverage pointer spraying technique for bypassing the
randomized memory layout. The only option for reliable
attack (other than information disclosure) is to rely on byte-
shift-independent values, which make it hard (if not impossi-
blewith careful heapmanagement) to craft valid pointers. But
this is not the case for byte-shift-independent non-pointer values,
which can allow an attacker to craft reliable memory corrup-
tion as intended and then escalate the attack further. A repre-
sentative example would be string length corruption [3], [10]
mentioned earlier in the paper Section 2.

7 RELATED WORK

HeapTaichi. [43] shows various heap spraying techniques that
leverage the allocation granularity of memory allocators. For
example, if allocation granularity is fixed, an attacker can
split nop-sleds into several pieces and stitch them together
with jump instructions. HeapTaichi claimed that reduced
allocation granularity in heap randomization is better for
security. However, the minimal allocation granularity con-
sidered in HeapTaichi is pointer-width. Although HeapTai-
chi discussed in-depth heap allocation granularity issues, no
discussion regarding byte-granularity allocation and its ram-
ification regarding security/performancewasmade.

Address Space Layout Permutation. [58] adopts a high degree
of randomness compared to the existing ASLR and also per-
forms fine-grained permutation against the stack, heap, and
other memory mapped regions. Heap randomization is not
the main theme of this work. However, the paper includes
descriptions regarding fine-grained heap randomization. To
adopt fine-grained address permutation for a heap, a random
(but page-aligned) virtual address between 0 and 3 GB
(assuming 32bit memory space) is selected for the start of the
heap. Afterwards, a random value between 0 and 4 KB is
added to this address to achieve sub-page randomization.
According to this method, heap pointers should have random
byte-level alignment, which involves unaligned access prob-
lem. However, discussion regarding unaligned access (due to
byte-level randomization) or the security effectiveness of byte-
granularity randomization was not discussed despite ASLP
covered a broad range of fine-grained randomization issues.

Address Space Randomization. [49] introduced fine-grained
Address Space Randomization (ASR) for various OS-level
components including heap object allocation. In this work,

TABLE 8
Per-Instruction Benchmark Against ARM CPUs

Architecture Instruction Penalty Remarks

Cortex-A9 LDR/STR 100% penalty occurs at 8-byte border
Cortex-A9 LDRB/STRB 0% no penalty
Cortex-A9 LDM/STM over 40,000% penalty always occurs, kernel emulation
Cortex-A9 LDM/STM (ThumbEE) 7,000% penalty always occurs, kernel emulation
Cortex-A9 (,A17) VLDR/VSTR N/A alignment fault
Cortex-A9 (,A17) LDREX/STREX N/A alignment fault (no atomicity)
Cortex-A17 LDR 100% penalty occurs on 8-byte border
Cortex-A17 STR 50% penalty occurs on 8-byte border
Cortex-A17 LDM/STM over 2,000% penalty always occurs, kernel emulation

The benchmark methodology is same to the Intel version.
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heap layout is effectively randomized by prepending ran-
dom size padding for each object and permuting the
sequence of allocated objects. The paper comprehensively
explores various memory layout randomization strategies
and propose various ideas regarding live re-randomization.
They implement each randomization policies by patching
the kernel and dynamic loader, or using binary code trans-
lation techniques. However, the security and performance
impact regarding byte-level memory layout randomization
is not the main interest of the paper. The main focus of the
paper is comprehensive OS-level ASR and live re-randomi-
zation with a minimal performance penalty.

Data Structure Randomization. Data Structure Layout Ran-
domization (DSLR) [59] randomizes the heap object layout
by inserting dummy members and permuting the sequence
of each member variables inside an object at compilation
time. The size of randomly inserted garbage member vari-
able is multiple of sizeof(void*) thus respecting CPU
alignment. The goal of DSLR is to diversify the kernel object
layouts to hinder the kernel object manipulation attack per-
formed by rootkits; in addition to thwarting the system fin-
gerprinting and kernel object manipulation attack which
relies on object layout information.

METAlloc. In general, heap exploitation can be broadly
divided into two categories: (i) exploitation based on cor-
rupting application data inside heap, and (ii) exploitation
based on corrupting metadata of heap allocator. While we
focus on the first case (heap exploits caused by application
data), there are other works which are more focused on the
latter issue. (e.g., A metadata management scheme [53] is
based on a novel memory shadowing technique.) While ra-
malloc uses diverse alignment to handle the cache border
access, METAlloc enforces the uniform alignment to opti-
mize metadata lookup performance.

Cling. The isolation heap protection approach separates
the heap into the independent area so that objects are allo-
cated at different parts depending on their types. Indeed,
these approaches can be observed in both academia and
industry. Cling [37] identifies the call site of a heap chunk
allocation request by looking into the call stack. If the chunk
allocation request originates from the same call site, Cling
considers the type of heap chunk to be the same, which indi-
cates that it is safe to reuse the same heap area for those
chunk requests. If the type is assumed to be different from
two allocation requests, Cling does not allow the heap area
to be reused between those requests. In practice, the heap
isolation methods can frequently be observed in various
security-critical software such as Internet Explorer, Chrome,
and Adobe Flash [31].

Other Heap Randomization Approaches. Incorporating ran-
domization into heap allocation has been discussed in numer-
ous previous works. Some approaches, such as those of
Bhatkar et al. and Qin et al., respectively randomize the base
address of the heap, as shown in [39], [61]. Others randomize
the size of the heap chunks, word-granularity location, alloca-
tion sequence and so forth [38], [40], [53], [56], [57], [60], [66].
From all these heap fortifications works including our paper,
the purpose in adopting the notion as well as the implementa-
tion differs from each other. The advancement from previous
works is that we showhow byte-granularity heap randomiza-
tion mitigates crafted pointer spray, then design an allocator

that optimizes performance cost of byte-granularity heap ran-
domization. Instead of locating the heap chunk at memory
location unpredictable by an attacker, byte granularity heap
randomization aim to obstruct heap exploits which require
pointer-width allocation granularity.

8 CONCLUSION

In this paper, we show an in-depth discussion of byte-granu-
larity heap randomization. At first, breaking the randomiza-
tion granularity from word to byte can be considered trivial.
However, this seemingly insignificant change in granularity
opened up a surprising number of research issues regarding
exploitmitigation, performance, anddeployment.Our security
analysis based on 20 real-world heap attacks demonstrated the
effectiveness of byte-granularity heap randomization in vari-
ous circumstances. After the security discussion, we show an
in-depth performance analysis of byte-granularity randomiza-
tion. Based on the performance analysis, we designed and
implemented ra-malloc: an allocator optimized for byte-granu-
larity heap randomization. The design of ra-malloc leverages
recent advancement of post-Nehalem Intel architectures for
handling themisaligned access. In particular, ra-malloc consid-
ers specific allocation sites regarding cache line border. The
compatibility analysis in this paper is based on ChakraCore,
Nginx, and CoreUtils benchmarks. Unfortunately, compatibil-
ity analysis of byte-granularity heap randomization shows
negative results.
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