
Journal of Systems Architecture 168 (2025) 103546

A
1

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

Bit-level compiler optimization for ultra low-power embedded systems
Seonyeong Heo a , Jiho Kim b, Woohyeop Im a, Jiyun Moon a, Daehee Jang a,∗
a School of Computing, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, 17104, Gyeonggi-do, Republic of Korea
b School of Computer Science, Georgia Institute of Technology, 225 North Avenue NW, Atlanta, 30332, GA, United States

A R T I C L E I N F O

Keywords:
Ultra low-power system
Compiler optimization
Embedded system
Static analysis
Bit-level analysis

 A B S T R A C T

Achieving ultra low-power consumption is essential for embedded systems deployed in harsh environments,
such as space and deep sea locations, where energy resources are scarce and physical accessibility is limited.
Typically, these systems employ ultra low-power microcontrollers that operate on narrow data widths of 8 or
16 bits at the microarchitecture level. If software developers do not carefully consider the data widths during
programming, the resulting programs may be suboptimally optimized for these ultra low-power systems. To
address this issue and enable more efficient low-power computing, this work proposes a novel optimizing
compiler that supports bit-level analyses and transformations. The proposed compiler analyzes how each
individual bit of a data item is utilized within a program to determine its optimal width. Consequently, the
proposed compiler reduces unnecessary data movements and computational overhead on ultra low-power
processors. This work implements the prototype compiler on top of the LLVM compiler framework and
evaluates the performance impact of the optimized embedded applications with a processor simulator.
1. Introduction

Ultra low-power embedded systems are critical for applications
that operate in remote or inaccessible environments where energy
availability is highly constrained [1], such as deep-sea sensor networks,
satellite system in space, environment monitoring systems, and wildlife
trackers. These systems typically rely on small battery or limited energy
harvesting, which makes energy efficiency not just a performance
concern but a fundamental requirement for long-term deployment and
maintenance cost reduction [2]. To meet such constraints, those sys-
tems generally adopt ultra low-power microcontrollers that can operate
at the microwatts level [3,4].

Ultra low-power processors often utilize narrow data paths, 8-bit
or 16-bit widths [5,6], rather than the more common 32-bit or 64-bit
widths used in general-purpose processors. Using a narrower data path
helps reduce switching activity, shortens critical paths, and limits mem-
ory access overhead, resulting in significant energy savings. However,
when programs are written in high-level languages like C, they often
rely on standard data types (e.g., int) assuming wider data widths. As
a result, the compiled binaries may include unnecessary computations,
type promotions, and memory accesses.

Manually tuning the data widths can alleviate these inefficiencies,
but it is labor-intensive, error-prone, and not scalable for frequently
changing applications. Then, automatic compiler optimizations can
provide a more scalable and convenient solution by automatically

∗ Corresponding author.
E-mail address: daehee87@khu.ac.kr (D. Jang).

transforming code to better exploit hardware characteristics. Tradi-
tional compiler optimizations, however, typically operate at the level
of bytes or words and lack the granularity needed to take advantage
of narrow data paths. These coarse-grained analyses may overlook
optimization opportunities that exist when only a subset of bits within a
variable are actually needed or used. In ultra low-power systems, such
missed opportunities can accumulate into a nontrivial power budget
overhead.

To address the limitation, this work proposes a novel optimizing
compiler that analyzes data usage at the level of bits. The proposed
compiler performs a static analysis, called bit usage analysis, to identify
the usage of each bit of a data value by analyzing bit-level instructions
(e.g., shift and bitwise and) if possible. Based on the bit usage
analysis, the compiler determines the minimum required data width
and transforms the code accordingly. The transformation can eliminate
unnecessary data movements and bit extensions when only a smaller-
width computation is sufficient. In the way, the compiler can enhance
both performance and resource efficiency of embedded applications, in
which bit-level instructions are frequently used.

Fig. 1 illustrates an example of the proposed bit-level compiler
optimization assuming 8-bit AVR architecture. In the example, the
upper 10 bits of the 16-bit data item x are masked by the bitwise and
operation, and then the upper bits are not used afterward. However,
the processor would load all the 16 bits because it is not aware of
https://doi.org/10.1016/j.sysarc.2025.103546
Received 28 April 2025; Received in revised form 7 August 2025; Accepted 11 Aug
vailable online 8 September 2025
383-7621/© 2025 The Authors. Published by Elsevier B.V. This is an open access a
ust 2025

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/sysarc
https://www.elsevier.com/locate/sysarc
https://orcid.org/0000-0003-0359-1953
mailto:daehee87@khu.ac.kr
https://doi.org/10.1016/j.sysarc.2025.103546
https://doi.org/10.1016/j.sysarc.2025.103546
http://creativecommons.org/licenses/by/4.0/

S. Heo et al. Journal of Systems Architecture 168 (2025) 103546
Fig. 1. An example of the proposed bit-level compiler optimization. The example assumes that the target system is based on an AVR architecture, which uses
8-bit word size and the data size of x is 16 bits.
Fig. 2. Overview of the proposed optimizing compiler.

its bit-level usage. It leads to unnecessary data movements and bit-
level operations, consuming additional clock cycles. To reduce the
undesirable overhead, the compiler statically analyzes the bit usage of
data items and adjusts the data width in the IR level. Then, instead of
loading the entire bits, it optimizes the source code to load only the
lower 8-bits (see Fig. 2).

This work implements the prototype optimizing compiler on top of
the LLVM compiler framework for compatibility with existing devel-
opment toolchains. This work evaluates the proposed compiler using
a processor simulator that models 8-bit AVR architecture. With the
simulator, this work uses the MiBench benchmark suite [7], which
include typical embedded workloads, compiling its benchmarks with
and without the proposed optimizations. The evaluation results show
that the compiler can statically analyze the bit usage of data items and
optimize the data width of data items.

Through the evaluation results, this work demonstrates that bit-level
compiler optimizations can improve the alignment between software
behavior and hardware capabilities for ultra low-power embedded
systems. By bridging the gap between high-level programming ab-
stractions and low-level hardware efficiency, this work contributes a
practical and scalable approach to optimizing embedded software at
compile time without runtime overhead.

The contributions of this work are:

• This work presents a novel optimizing compiler for ultra low-
power embedded system, which provide bit-level static analysis
and transformation.

• This work conducts a comprehensive use case analysis of the
proposed compiler optimization method with existing embedded
benchmark suites.

• This work implements the proposed method on top of the LLVM
compiler infrastructure and evaluation of the method with a
processor simulation.
2
2. Background & Motivation

See Fig. 3.

2.1. Ultra low-power embedded systems

Ultra low-power embedded systems are designed to operate with
minimal energy consumption, making them ideal for battery-powered
and energy-harvesting applications such as wearable devices, remote
sensors, and medical implants. These systems typically employ ultra
low-power microcontrollers like AVR architecture illustrated in Fig. 3,
which integrates essential components including arithmetic logic units,
general-purpose registers, timers, and communication interfaces within
a compact, power-efficient design. They provide key features like sleep
modes, watchdog timers, and minimal clock usage to minimize power
consumption during idle periods, ensuring longer operational lifetimes
on limited power sources.

These ultra-low power embedded systems often use narrow data
widths, such as 8-bit or 16-bit data paths, to reduce both dynamic
and static power consumption. For example, in the figure, the data bus
of the architecture operates on 8-bit data as it is sufficient for many
control-oriented tasks while significantly lowering switching activity
and silicon area. Narrow data widths simplify circuit complexity, re-
duce memory footprint, and allow for more aggressive voltage scaling,
which can contribute to extended battery life in resource- and energy-
constrained environments.

Although ultra-low power embedded systems may use narrow data
paths like 8 or 16 bits, they often need to handle larger data types
commonly used in general-purpose programming languages, such as
32-bit or 64-bit integers and floating-point values. In these cases, the
system emulates wider data operations by performing multiple sequen-
tial operations on narrower data chunks. For example, a 32-bit addition
might be implemented as a sequence of four 8-bit additions with carry
propagation between them. Therefore, the selection of data widths in a
high-level program can affect the overall performance of the program,
resulting in a different number of instructions.

2.2. Applications for embedded systems

Embedded applications are software designed to perform dedicated
functions within an embedded system, often under strict resource con-
straints such as limited memory, processing power, and energy con-
sumption. These applications are typically developed for real-time re-
sponsiveness, reliability, and efficiency, tightly coupled with the hard-
ware they operate on. As embedded applications are directly pro-
grammed into target embedded systems, it is important to optimize
them considering low-level hardware features.

One high-level characteristic of embedded applications is that bit-
level operations are widely used in the applications due to their compu-
tational efficiency and direct hardware relevance. Bit-level operations

S. Heo et al. Journal of Systems Architecture 168 (2025) 103546
Fig. 3. The example architecture of an ultra lower-power embedded system with narrow data width.
Fig. 4. The example code of an embedded application called gsm from the MiBench benchmark suite. In the example, the data type word is a 16-bit data type.
such as bitwise and, bitwise or, and shift allow manipulating
individual bits of data, which is essential for tasks like setting or
clearing flags, configuring hardware registers, and handling I/O at the
bit level. These operations are computationally inexpensive and fast,
making them ideal for optimizing performance in resource-constrained
environments.

However, not all bits in every data are always fully utilized because
it is common to pack multiple small fields into bytes to save space. Fig.
4 shows a code snippet from an example embedded application called
gsm that performs speech compression. The gsm_encode function
encodes speech parameters into a byte stream. Each parameter occupies
a specific number of bits, and bitwise operations are used to combine
them compactly. For example, (LARc[0] » 2) & 0xF extracts only
4 bits of the value to store in a byte. The packing process may leave
certain bits unused or reserved for alignment or future use. This implies
that it may not be necessary to load all the bits at a certain time.

2.3. LLVM compiler infrastructure

LLVM [8] is a modular, reusable compiler infrastructure designed
to support the development of modern programming languages and
sophisticated code transformations. It provides a set of libraries and
3
tools that enable source code to be compiled into an intermediate rep-
resentation (IR), which can then be analyzed, optimized, and translated
into machine code for various architectures. Thanks to its language-
agnostic design, LLVM is used as the backend for compilers like Clang
(for C/C++), and it is widely adopted in academia, industry, and
embedded toolchains.

The pass infrastructure of LLVM is a core framework that allows
developers to implement modular analysis and transformation algo-
rithms for code optimization, known as passes. Fig. 5 briefly illustrate
the concept of the pass infrastructure. Passes can perform a variety of
optimizations on the LLVM IR, such as dead code elimination, constant
propagation, loop unrolling, or custom static analysis. The pass infras-
tructure enables fine-grained control over program optimization and
facilitates the implementation of custom compiler extensions.

3. Compiler design

This work presents a novel compiler for analyzing and optimizing
the bit-level data usage of source program. The compiler conducts a
static analysis of how each bit of data is used in the program. Based
on the analysis results, the compiler transforms the program to use the
optimal data width and remove unnecessary conversion operations.

S. Heo et al. Journal of Systems Architecture 168 (2025) 103546
Fig. 5. Concept of LLVM pass infrastructure. The source program is optimized through LLVM passes in the IR level.
3.1. Bit usage analysis

The compiler examines if each bit of a value is used or not. For
the analysis, the compiler identifies source and sink instructions in a
function.

• A source instruction becomes the source of a data value. It may
load a value from the memory or allocate a memory space to store
a value. For example, in LLVM IR, load and alloca (which
allocates memory on the stack frame) can be source instructions.

• A sink instruction becomes the sink of a data value, at which the
data value is finally used. It may return no value or may use a
value for comparison. For example, in LLVM IR, store and icmp
can be sink instructions.

The compiler tracks the bit usage of each value along the paths from
its source instruction to sink instructions. From each source instruction,
the compiler follows the def-use (definition and usage) chains until it
reaches the sink instructions. Then, starting from the sink instructions,
the compiler updates the bit usage of each data value until it reaches
back to the source instruction.

Note that the compiler targets only instructions with the integer
types (e.g., 𝑖16, 𝑖32 in LLVM IR). In general, bit masking operations
are applied to integer values, rather than to floating-point values.
Moreover, low-power embedded systems often lack floating-point units
in hardware and therefore tend to avoid floating-point computations
due to computational overhead. As a result, the bit-level usage of
floating-point values is rarely analyzable or unnecessary for low-power
embedded applications.

The compiler can statically determine the bit usage of a data value
for specific bit-level operations.

• Masking: A bitwise and operation with a constant can mask
partial bits of a data value. For example, with x & 0x7F, the
compiler can infer only the lower 7 bits of x is used if the
instruction is the only user of x.

• Shift: A shift operation may drop upper or lower bits of a data
value. For example, with x » 16, the compiler can infer the lower
16 bits of x is dropped by the instruction.

Algorithm. Algorithm 1 describes the overall algorithm of the bit usage
analysis for a given instruction 𝐼 . The compiler stores the analysis result
in the bit usage map 𝑀 , of which key becomes an instruction and
value becomes a bit mask that indicates if each bit of the result is used
or not. Note that the compiler applies the algorithm to each source
instruction in the target function. The algorithm begins by checking
if the instruction has already been analyzed or the instruction is a sink
instruction. If so, it immediately returns because it is unnecessary to
perform the analysis. If not, it initializes the bit usage value 𝑏 and
obtains the data width 𝑤 of 𝐼 .

For each instruction 𝑈 that uses the result of 𝐼 (i.e., the value of 𝐼),
it updates 𝑏 based on the instruction type of 𝑈 . If 𝑈 is a zext (zero
extension), sext (sign extension), or trunc (truncation) instruction,
which is used to change the data type and the data width accordingly, it
recursively computes the bit usage of the user. Then, the bit usage of the
user is directly combined with the bitwise or operation regarding the
current data width using bit masking. As extension or truncation does
4
Algorithm 1: Bit Usage Analysis
Input: Target instruction 𝐼
Output: Bit usage map 𝑀

1 if 𝐼 is already in 𝑀 or a sink instruction then
2 return
3 end
4 if 𝐼 is not an integer type then
5 return
6 end
7 𝑏 ← 0
8 𝑤 ← the data width of 𝐼
9 for every user 𝑈 of the instruction 𝐼 do
10 if 𝑈 is a zext, sext, or trunc instruction then
11 𝑏𝑢 ← Get the bit usage of 𝑈
12 𝑏 ← 𝑏 | 𝑏𝑢 & {(1 ≪ 𝑤) − 1}
13 else if 𝑈 is a bitwise instruction then
14 𝑜1 ← the first operand of 𝑈
15 𝑜2 ← the second operand of 𝑈
16 𝑏𝑢 ← Get the bit usage of 𝑈
17 if 𝑈 is an and instruction ∧ 𝑜2 is a constant then
18 𝑏 ← 𝑏 | (𝑏𝑢 & 𝑜2)
19 else
20 𝑏 ← 𝑏 | 𝑏𝑢
21 end
22 else if 𝑈 is a constant shift instruction then
23 𝑏𝑢 ← Get the bit usage of 𝑈
24 𝑏𝑢 ← Shift the bit usage 𝑏𝑢 according to 𝑈
25 𝑏 ← 𝑏 | 𝑏𝑢
26 else
27 𝑏 ← 𝑏 | {(1 ≪ 𝑤) − 1)}
28 end
29 end
30 𝑀[𝐼] ← 𝑏

not change the bit usage of the value but the data width, the compiler
keeps the result as it is.

If 𝑈 is a bitwise instruction, it first checks if the first operand is
a bitwise and instruction and the second operand is a constant. If so,
the algorithm applies a bitwise and with the constant to narrow down
the bit usage. If a bitwise and operation is applied with the constant,
it implies a masking operation that may zero out some bits. Then, the
compiler marks the bits by applying the same mask to the bit usage of
the user 𝑏𝑢. Otherwise, it combines its usage.

If 𝑈 is a constant shift operation, the bit usage is adjusted (shifted)
accordingly before being combined. If the user is a shift left instruction,
the bit usage of the user has to be shifted to the right with the same
amount. For example, if the user is a shift left instruction with the shift
amount of 2 and the bit usage of the user is 110000002, the compiler
will compute the shifted bit usage as 001100002. Note that the compiler
applies the logical shift right operation, as the bits truncated by the
shift left operation cannot be used afterward.

S. Heo et al. Journal of Systems Architecture 168 (2025) 103546
Fig. 6. An example of bit-level analysis and transformation for a sample IR snippet generated from the gsm benchmark.
If none of these special cases apply, it assumes all bits are used and
sets 𝑏 accordingly. Then, the compiler stops following the def-use chain
for the bit usage analysis because it reaches the sink instruction.
Example. Fig. 6 illustrates an example of how the bit usage analysis
algorithm works on a sequence of LLVM IR instructions. The analysis
analyzes the bit usage of source instructions from the sink instructions
backwards through the instruction dependencies. In the example, the
value %27 is a truncated 8-bit value derived from %26. As the value
%27 is 8 bits wide, the 32-bit bit usage of %26 is masked with 8 bits
only. As %26 is the result of the bitwise or instruction, the bit usage
of %26 must be preserved for the bit usage of %25. Thus, %25 has the
same bit usage with %26.

Next, %25 is the result of the bitwise and instruction between %24
and the constant 15 (which is 00001111 in binary). According to the
algorithm, the compiler masks the bit usage of %24 to only the lower
4 bits, meaning only bits 0 to 3 of %24 are actually needed. %24 is the
result of an arithmetic right shift with %23 by 2. Then, the compilers
determines that bits 2 to 5 of %23 are required because the lower 2
bits are dropped by the shift right operation. Next, %23 is the result of
a sign extension with %22, which means the relevant bits in %23 come
directly from %22. Since bits 2 to 5 of %23 are needed, those same bits
must be marked as used in %22, which is a 16-bit loaded value. Thus,
the bit usage map for %22 ends up marking bits 2 through 5 as used.

Overall, the example demonstrates how the compiler identifies the
bit usage of each value that are necessary for producing the final result.
The compiler uses the results of the bit usage analysis (i.e., bit usage
map) for transformations, to optimize the source program targeting
ultra low-power systems that use narrow data paths.

3.2. Data width optimization

As one of the bit-level optimizations, the compiler adjusts the data
width of each value based on the bit usage analysis. If only part of
bits are used, it is unnecessary to load or allocate the entire bits.
For example, if only the lower 8 bits of a 32-bit value are used, the
program may load only one byte of the data instead of loading the
entire four bytes. The compiler optimizes the data widths of values
when applicable.

The data width optimization can enhance the performance of the
source program in various aspects. First, since ultra low-power micro-
controllers may use the word size smaller than 32 bits, the optimization
will decrease instruction count by eliminating redundant operations for
wide data widths. Second, the optimization will help better utilize the
memory bus by removing unnecessary memory accesses.
Algorithm. Algorithm 2 briefly describes the data width optimization.
Given a target instruction 𝐼 and a bit usage map 𝑀 , the compiler first
checks if 𝐼 is included in 𝑀 . If not, no optimization is performed as
5
Algorithm 2: Data Width Optimization
Input: Target instruction 𝐼

 Bit usage map 𝑀
1 if 𝐼 is not in 𝑀 then
2 return
3 end
4 𝑏 ← 𝑀[𝐼]
5 if 𝐼 is a source instruction then
6 𝐼∗ ← Generate a new instruction with a narrow width

based on 𝑏
7 Replace 𝐼 with 𝐼∗
8 else if 𝐼 is a binary instruction then
9 𝑜1 ← the first operand of 𝐼
10 𝑜2 ← the second operand of 𝐼
11 if the data widths of 𝑜1 and 𝑜2 differ then
12 Insert a zext instruction for the value with a narrower

width
13 end
14 if the data width of 𝐼 differs from 𝑜1 and 𝑜2 then
15 𝐼∗ ← Generate a new instruction with a narrow width

based on 𝑏
16 Replace 𝐼 with 𝐼∗
17 end
18 end
19 if the data width of 𝐼 is changed then
20 for every user 𝑈 of the instruction 𝐼 do
21 Apply the data width optimization for 𝑈
22 end
23 end

it means that the compiler cannot analyze its bit usage statically. If
𝐼 is present in the bit usage map, the compiler retrieves its bit usage
information 𝑏 from 𝑀[𝐼]. If 𝐼 is a source instruction, it generates a
narrower version of the instruction that preserves only the required
bytes indicated by the most significant bit in 𝑏, and replaces 𝐼 with
the new instruction 𝐼∗.

If 𝐼 is a binary instruction, the algorithm first compares the data
widths of its two operands. If they differ, it inserts appropriate zero-
extension instructions to align operand widths. Otherwise, it replaces
the original instruction with a narrower equivalent derived from 𝑏.
After optimizing 𝐼 , the algorithm recursively applies the same trans-
formation to all user instructions of 𝐼 , propagating the data width

S. Heo et al. Journal of Systems Architecture 168 (2025) 103546
Algorithm 3: Conversion Operation Optimization
Input: Target function 𝐹

 Bit usage map 𝑀
1 for every instruction 𝐼 in 𝐹 do
2 if 𝐼 is neither an ext nor a trunc instruction then
3 continue
4 end
5 𝑜 ← the operand of the instruction
6 if the source and target data types of 𝐼 are the same then
7 Replace all usages of 𝐼 with 𝑜
8 Erase 𝐼 from 𝐹
9 end
10 else if 𝐼 is an ext instruction ∧ 𝐼 has one user then
11 𝑈 ← the user of the instruction
12 if 𝑈 is a trunc instruction then
13 if the source type of 𝐼 is equal to the target type of 𝑈

then
14 Replace all usages of 𝑈 with 𝑜
15 Erase 𝐼 and 𝑈 from 𝐹
16 end
17 end
18 end
19 end

optimization throughout the program. This optimization enables com-
pilers to cut back unnecessary bit widths, improving memory efficiency
and reducing computation cost.

Example. Fig. 6 shows how the compiler optimizes the data width
of each instruction. As only the bits 2 through 5 of %22 are used, the
compiler replaces the load instruction with the narrower type of 8-bit
integer. Then, the following instructions are updated accordingly. As
the data type of %27 is not changed, the compiler stops the transfor-
mation at %27. Note that the compiler will move on to the next source
instruction afterward.

3.3. Conversion operation optimization

After applying the data width optimization, the compiler tries to
remove unnecessary bit-level operations, extension or truncation. As
the compiler adjusts the data widths of bit-level instructions and inserts
zero extension instructions to match the data widths, there might
be unnecessary extensions or truncations in the source program. For
example, in Fig. 6, the sign extension and truncation instructions are
no longer needed. Therefore, the compiler identifies and eliminates
unnecessary instructions to save more clock cycles for the execution.
Algorithm. Algorithm 3 briefly describes the data width optimization.
The algorithm iterates over each instruction 𝐼 in a given function 𝐹 ,
checking whether 𝐼 is a zext instruction. If so, it first ensures that 𝐼 has
only a single user. If it has multiple users, the optimization is skipped
to preserve correctness. If there is only one user 𝑈 , and 𝑈 is a trunc
instruction, the algorithm further checks whether the source type of
the zext instruction matches the target type of the trunc instruction.
When these conditions are satisfied, the intermediate zext and trunc
operations form a redundant type conversion that can be eliminated.
The algorithm replaces all uses of U with the original operand o of the
zext, then removes both I and U from the function.

4. Use cases

This work explores two additional use cases of the proposed com-
piler optimization, where bit-level analysis can be beneficial, to demon-
strate its practical usefulness and broader applicability.
6
4.1. Efficient fault-tolerant computing

Reliability is a critical requirement for embedded systems, particu-
larly when the systems operate in harsh environments where transient
faults frequently occur [9]. For example, on-board computers in a
satellite often encounter soft errors, such as single-event upsets (SEUs),
flipping a single bit of data in a storage, due to strong cosmic radiation.
Although soft errors do not cause permanent physical damage, their
impact on data integrity can disrupt system functionality, potentially
leading to incorrect computations or system failures.

Typically, fault-tolerant computing systems rely upon hardware-
level solutions due to the considerable runtime overhead of software-
level solutions. Fault-tolerant hardware components, such as fault-
tolerant processors and memories, are designed to detect and correct
soft errors autonomously, ensuring data integrity and system reliability
without software modifications.

However, fault-tolerant processors might suffer from unnecessary
error detection and correction as they are not aware of the high-level
data usage. As error detection and correction are typically done when
data is loaded, if soft errors are detected in unused bits, the processor
would try to correct the error in the bits, flushing the cache line
and executing the instruction again as illustrated in Fig. 7. Then, the
processor consumes extra cycles for error correction even though it is
not necessary.

The proposed bit-level optimization can alleviate those unnecessary
overheads by loading the bits that are actually used. Then, the error
detection and correction will be performed on the data that are actually
used in the program. Here, note that the processor must support narrow
data manipulation (error detection and correction) to obtain actual
performance gains. With the hardware support, the optimizing compiler
can provide more efficient fault-tolerant computing.

4.2. Bit-banding optimization

Another compelling application of the bit usage analysis is bit-
banding optimization, a hardware feature supported by ARM Cortex-M
processors (e.g., ARM Cortex-M4). Bit-banding enables direct, atomic
accesses to individual bits in memory by mapping each bit to a ded-
icated alias address. When the bit usage analysis reveals that only a
single bit of a memory-mapped variable is read or written (e.g., through
bitwise operations with constants), standard memory operations that
involve load–modify–store sequences can be replaced with bit-band
accesses. This transformation may reduce memory traffic, improve
atomicity, and lower instruction count.

For example, if only a single bit of a static variable is used in a
function, the compiler may place the variable in the bit-band region
(e.g., .bitband_sram) and transform the corresponding operations
into bit-band memory accesses. Fig. 8 illustrates a more concrete opti-
mization in a high-level representation for clarity. In the example, the
check_flag function reads the Nth bit of the static variable flag.
Without the bit banding, it may load the flag value and apply shift
and masking operations to check the specific bit. On the other hand,
with bit-banding optimization, it can check the bit with a single load
instruction from the corresponding bit-band alias address.

5. Evaluation

5.1. Experimental setup

This work implements the proposed optimizing compiler on top of
the LLVM compiler infrastructure (Version: 18.1.0rc). With the LLVM
pass framework, this work develops three analysis and transformation
passes: BitUsageAnalysis, DataWidthOpt, and ConvOpOpt.
The optimization passes can be applied using the opt tool of LLVM.
This work applies the optimization passes to six benchmarks, bit-
count, dijkstra, sha, adpcm, gsm, and crc32, from the MiBench

S. Heo et al. Journal of Systems Architecture 168 (2025) 103546
Fig. 7. An example of an unnecessary error correction on a fault-tolerant processor. Even though soft error occurs in the unused bit, the fault-tolerant processor
would correct the soft error unnecessarily.
Fig. 8. High-level representation of a bit-banding optimization for an example code. Here, N is a constant integer and BITBAND indicates a macro that computes
the bit-band alias address.
Table 1
The percentages of the IR instructions that have partial bit usage and the total number of AVR instructions and
the number of AVR memory access instructions in each executable binary. Note that adpcm includes separate
binaries for encryption and decryption.
 Benchmark bitcount dijkstra sha adpcm enc/dec gsm enc crc32
 Partial bit usage 12.1% 0.0% 4.93% 5.76% 17.6% 0.0%
 Original Total 1663 1642 2146 1276/1276 13,851 211
 Memory 258 333 529 216/215 2547 22
 Optimized Total 1660 1642 2146 1435/1435 13,298 211
 Memory 258 333 529 242/241 2520 22
 Difference Total 0.18% 0.0% 0.0% −12.5%/−12.5% 3.99% 0.0%
 Memory 0.0% 0.0% 0.0% −12.0%/−12.1% 1.06% 0.0%
suite [7]. This work uses the -O2 optimization flag to generate the
IR code and binary of each benchmark. The other benchmarks are
excluded for evaluation as they are unfortunately too large for AVR-
based systems, which have a small register file and limited program
storage. This work verifies the correctness of the implementation using
the sample inputs given by the benchmark suite. With the benchmarks,
this work evaluates the compiler optimization both statically and
dynamically. For static evaluation, this work measures the number of
IR instructions in each executable binary whose bit usage is analyz-
able and optimizable using the proposed compiler. In addition, this
work counts the number of AVR instructions to quantify how much
the compiler can reduce the number of instructions; also evaluating
the compilation overhead of the proposed optimization to show its
feasibility, measured on a desktop with an Intel Core i7-13700F CPU
and 32 GB memory.

For dynamic evaluation, this work builds a simulation environment
based on QEMU, targeting an AVR-based MCU (ATmega2560). With
the emulator, this work accurately measures the number of instructions
actually executed at run-time (via dynamic binary instrumentation) and
compares the results with the original and optimized benchmarks. In
7
addition, this work measures the execution time of the commercial AVR
MCU board, Arduino Mega 2560, which uses the same ATmega2560
chip used in the emulator.

5.2. Results

Instruction Count: This work first reports the number of instructions
for each benchmark, counted at compile time. Table 1 presents the
percentage of (analyzable) IR instructions with partial bit usage and the
total number of AVR instructions in each compiled binary, both before
and after applying the proposed optimization. The results show that the
bitcount, adpcm, sha, and gsm benchmarks contain IR instructions
with partial bit usage, with gsm reaching up to 17.6%.

While the proposed compiler reduces the total instruction count
for benchmarks such as bitcount and gsm, the instruction count of
adpcm increases after optimization. It is because the proposed opti-
mizations enable other compiler optimizations such as loop unrolling
in the case of adpcm. Such optimizations may increase the static
instruction count but can improve run-time performance, as reflected
in the dynamic instruction count.

S. Heo et al. Journal of Systems Architecture 168 (2025) 103546
Table 2
The total number of instructions and the number of memory access instructions
executed at run-time with the AVR processor emulator.
 Benchmark bitcount adpcm enc adpcm dec gsm enc
 Original Total 12,898,386 323,439 877,826 7,011,975
 Memory 195,677 29,266 45,699 595,278
 Optimized Total 12,717,413 306,026 734,143 7,009,047
 Memory 195,677 29,272 45,699 594,382
 Difference Total −1.42% −5.69% −19.6% −0.04%
 Memory 0% 0.02% 0% −0.15%

Table 3
The execution time of the original and optimized executable binaries of each
benchmark on the commercial AVR board.
 Benchmark bitcount adpcm enc adpcm dec gsm enc
 Original 902,288 μs 22,936 μs 61,504 μs 2,269,296 μs
 Optimized 890,908 μs 21,968 μs 53,512 μs 2,268,464 μs
 Difference −1.28% −4.41% −14.9% −0.04%

In addition, the sha benchmark shows no difference in static in-
struction count despite the presence of partial bit usage, as the compiler
fails to find sequences of optimizable instructions. For instance, reduc-
ing the data width of a single load instruction may not be beneficial if
it requires additional extension instructions to match the data widths
with its users. These results indicate that the bit usage analysis and
transformation are effective, particularly when consecutive instructions
exhibit partial bit usage.

Furthermore, although the proposed compiler mainly targets mem-
ory instructions, many memory instructions are eliminated during back-
end compilation. As the proposed compiler optimizes other instruc-
tions associated with the memory instructions, it can still achieve
performance improvements exploiting partial bit usage.

Table 2 shows the number of instructions executed during the run-
time of each application. The benchmarks bitcount, adpcm enc,
adpcm dec, and gsm achieve reductions in the number of dynami-
cally executed instructions on the simulated AVR processor. The other
benchmarks exhibit no change in static instruction count, and thus
are omitted from the table. Interestingly, although the adpcm bench-
mark shows the largest increase in static memory instruction count, it
achieves the greatest run-time improvement, with reductions of 5.69%
and 19.6% in dynamic instruction count.

These results confirm that the proposed bit-level optimizations can
successfully decrease dynamic execution cost, particularly when the
data width of memory accesses can be optimized. In contrast, bench-
marks like dijkstra, sha, and crc32, which exhibit limited bit-
level optimization opportunities at compile time, show no measurable
impact at run-time. This correlation reinforces the effectiveness of the
proposed bit usage analysis in identifying and optimizing instructions
that can benefit from data width reduction.
Execution Time: This work also measures the actual execution time
of each benchmark on a commercial AVR-based board. Table 3 sum-
marizes the execution time of each benchmark in microseconds. The
observed trends are consistent with the simulation results: the adpcm
dec benchmark shows the greatest reduction in execution time, while
the gsm enc benchmark shows the smallest.
Compilation Overhead: This work evaluates the compilation overhead
of the proposed optimizations by comparing the compilation times of
the original and optimized executable binaries. Fig. 9 shows the total
compilation time of each benchmark, with and without optimizations.
On average, the proposed optimizations incur only an 8.8% overhead
compared to the original compilation time. For the largest benchmark,
gsm enc, the entire optimization process takes only 250 ms. These re-
sults demonstrate that the proposed bit-level optimizations are practical
and introduce small compilation overhead.
8
6. Related work

6.1. Compilers for low-power embedded systems

Compilers for low-power embedded systems have been studied in
various ways, including hardware-aware optimizations and memory
management.

Some work focuses on selecting the best compiler flags or opti-
mizations for target embedded systems. Kyriakos et al. [10] show
that skipping certain standard optimizations can improve both per-
formance and energy efficiency on ARM Cortex-M4 systems. Sachan
and Ghoshal [11] use machine learning to select compiler flags based
on power profiles, achieving over 18% energy savings. Ni et al. [12]
apply genetic algorithms to optimize compiler flags on Raspberry Pi
4, improving performance by 19% on average. Peker and Ozturk [13]
propose a fast method to find optimal compiler settings in under
100 ms.

Koutsoumpas et al. [14] proposes a constrained-based compiler
for energy harvesting applications, which considers energy availability
during compilation to optimize the energy efficiency of software code
running on small computing devices. The proposed compiler identifies
computations that may be performed ahead of time and optimizes the
precomputation policy to match the intermittent power supply while
satisfying system requirements.

Manjunath and Baunach [15] propose a novel static analysis frame-
work that enables performance analysis and verification of manually
implemented low-level RTOS code against internal hardware effects.
The proposed framework is built on top of an existing WCET static
analysis tool called OTAWA to analyze the compiled low-level code and
extract intermediate results of the WCET analysis.

For embedded systems, memory optimizations have also been con-
sidered important. Zhang et al. [16] propose tunable cache configura-
tions, while Lee and Kim [17] minimizes write buffer activity to reduce
power consumption. CLAP [18] improves DRAM prefetching efficiency,
and Macho [19] ensures cache reliability near threshold voltage. Rouf
and Kim [20] use pipeline redundancy for control-flow protection.

For specific target workloads, such as artificial intelligence and sen-
sor data processing, Petruccelli [21] proposes to replace multiply-and-
accumulate operations with shift-add, improving energy use by 31%.
Mu et al. [22] use domain-specific languages to describe the bounds of
and relations between physical quantities measured by sensors and op-
timize target application based on the information. MANIC [23] intro-
duces a low-power vector-dataflow architecture. Recent work explores
using large language models for code optimization [24].

Empirical studies also show compiler optimizations can affect bat-
tery life. Fernandes et al. [25] find that dynamic voltage and frequency
scaling (DVFS) combined with compiler tuning can lead to 4% addi-
tional energy savings. Compiler autotuning frameworks like Milepost
GCC [26] and COBAYN [27] demonstrate practical energy gains.

However, many of these approaches are coarse-grained and over-
look bit-level redundancies in data movement. On the other hand,
this work addresses this gap by statically analyzing the bit usage to
minimize data widths, specially targeting ultra-low power processors
operating on narrow data paths.

Similar to this work, some existing work studies bit width-aware
compilation based on the motivation that using narrow-width data
can reduce switching activity and redundant computation [28]. Zhang
et al. [29] apply bit-level optimization to FPGA synthesis, achieving up
to 30% logic reduction.

6.2. Bit-level compiler analysis

Some existing work [30,31] conducts bit-level compiler analysis to
examine reliability against soft errors or track bit values at static time.

Ko et al. [30] propose Bit-level Error Coalescing (BEC) analysis to
improve reliability against soft errors by tracking the semantic effects of

S. Heo et al. Journal of Systems Architecture 168 (2025) 103546
Fig. 9. Total compilation times of the original and optimized binaries for each benchmark.
individual bit corruptions. The proposed analysis enables fault injection
pruning and vulnerability-aware instruction scheduling on top of the
LLVM compiler framework. While their method also performs bit-level
analysis, it focuses on reliability, whereas this work targets code size
and memory efficiency in constrained embedded systems. This work
applies bit usage analysis to enable bit-width reduction considering
narrow data paths.

The LLVM compiler framework [8] includes a built-in analysis
called KnownBits [31], which tracks known zero and one bits in values,
mainly used for constant folding and instruction selection. Since its
fundamental goal is to track bit-level values, it cannot track bit-level
usage. For example, when a value is loaded, it can only tell that all bits
are unknown, without analyzing the further usage of the bits through
the data flow. That is, unknown bits cannot be assumed to be used,
as their usage depends on how the value is consumed in subsequent
computations. Therefore, the analysis cannot provide precise informa-
tion about bit-level usage. In contrast, the proposed analysis propagates
bit usage across the dataflow graph, identifies dead bits, and enables
optimizations like data width reduction, which is not possible with
the KnownBits analysis. That is, the target of the proposed analysis
is fundamentally different from that of KnownBits, enabling different
types of optimizations.

7. Conclusion

Ultra low-power embedded systems generally employ microcon-
trollers that operate on data widths of 8 or 16 bits at the microarchi-
tecture level. If software developers do not carefully consider the data
widths during programming, the resulting programs may be subopti-
mally optimized for these ultra low-power systems. To address this is-
sue and enable more efficient low-power computing, this work proposes
novel bit-level compiler optimizations. These optimizations analyze
how each individual data bit is utilized within a program to determine
the optimal operation width. Consequently, the proposed compiler
reduces unnecessary data movements and computational overhead on
ultra low-power processors. This compiler approach has been imple-
mented using the LLVM compiler framework and evaluated through
simulations on a processor simulator.

CRediT authorship contribution statement

Seonyeong Heo: Writing – review & editing, Writing – original
draft, Validation, Software, Methodology, Investigation, Conceptualiza-
tion. Jiho Kim: Software. Woohyeop Im: Validation. Jiyun Moon:
Writing – original draft. Daehee Jang: Writing – review & editing,
Supervision, Project administration.
9
Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Daehee Jang reports financial support was provided by Korea Ministry
of Science and ICT. Daehee Jang reports financial support was provided
by Korea Defense Acquisition Program Administration. Daehee Jang
reports financial support was provided by Kyung Hee University -
Global Campus. If there are other authors, they declare that they have
no known competing financial interests or personal relationships that
could have appeared to influence the work reported in this paper.

Acknowledgments

This work was supported in part by Institute of Information &
communications Technology Planning & Evaluation (IITP) grant funded
by the Korea government (MSIT) (No. RS-2023-00266615, RS-2025-
02214497, RS-2024-00337703), KRIT (Korea Research Institute for de-
fense Technology planning and advancement) grant funded by Defense
Acquisition Program Administration (DAPA) (KRIT-CT-24-001); and in
part by a grant from Kyung Hee University in 2023 (KHU-20230880).

Data availability

No data was used for the research described in the article.

References

[1] E. Villarino, Design and implementation of low-power microcontrollers for
embedded systems in IoT applications, J. Electr. Electron. Syst. 13 (5) (2024)
140, http://dx.doi.org/10.37421/2332-0796.2024.13.140.

[2] R.M. Santos, J. Santos, J.D. Orozco, Power saving and fault-tolerance in real-
time critical embedded systems, J. Syst. Archit. 55 (2) (2009) 90–101, http:
//dx.doi.org/10.1016/j.sysarc.2008.09.001.

[3] R. Immonen, T. Hämäläinen, Tiny machine learning for resource-constrained
microcontrollers, J. Sens. 2022 (1) (2022) 7437023, http://dx.doi.org/10.1155/
2022/7437023, arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1155/2022/
7437023. URL https://onlinelibrary.wiley.com/doi/abs/10.1155/2022/7437023.

[4] D. Yadav, B. Raj, B. Raj, Design and simulation of low power microcontroller
for internet of things applications, Sens. Lett. 18 (2020) 401–409, http://dx.doi.
org/10.1166/sl.2020.4241.

[5] Y. Xu, X. Wang, Y. Chen, et al., An ultra-low-power embedded processor
with variable micro-architecture, Micromachines 12 (3) (2021) 314, http://dx.
doi.org/10.3390/mi12030314, URL https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC8000853/.

[6] M. Aldea Rivas, H. Perez Tijero, Leveraging real-time and multitasking ada
capabilities to small microcontrollers, J. Syst. Archit. 94 (2019) 32–41, http:
//dx.doi.org/10.1016/j.sysarc.2019.02.015.

[7] M.R. Guthaus, J.S. Ringenberg, D. Ernst, T.M. Austin, T. Mudge, R.B. Brown,
Mibench: A free, commercially representative embedded benchmark suite, in:
Proceedings of the Workload Characterization, 2001. WWC-4. 2001 IEEE In-
ternational Workshop, WWC ’01, IEEE Computer Society, USA, 2001, pp.
3–14.

http://dx.doi.org/10.37421/2332-0796.2024.13.140
http://dx.doi.org/10.1016/j.sysarc.2008.09.001
http://dx.doi.org/10.1016/j.sysarc.2008.09.001
http://dx.doi.org/10.1016/j.sysarc.2008.09.001
http://dx.doi.org/10.1155/2022/7437023
http://dx.doi.org/10.1155/2022/7437023
http://dx.doi.org/10.1155/2022/7437023
https://onlinelibrary.wiley.com/doi/pdf/10.1155/2022/7437023
https://onlinelibrary.wiley.com/doi/pdf/10.1155/2022/7437023
https://onlinelibrary.wiley.com/doi/pdf/10.1155/2022/7437023
https://onlinelibrary.wiley.com/doi/abs/10.1155/2022/7437023
http://dx.doi.org/10.1166/sl.2020.4241
http://dx.doi.org/10.1166/sl.2020.4241
http://dx.doi.org/10.1166/sl.2020.4241
http://dx.doi.org/10.3390/mi12030314
http://dx.doi.org/10.3390/mi12030314
http://dx.doi.org/10.3390/mi12030314
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8000853/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8000853/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8000853/
http://dx.doi.org/10.1016/j.sysarc.2019.02.015
http://dx.doi.org/10.1016/j.sysarc.2019.02.015
http://dx.doi.org/10.1016/j.sysarc.2019.02.015
http://refhub.elsevier.com/S1383-7621(25)00218-8/sb7
http://refhub.elsevier.com/S1383-7621(25)00218-8/sb7
http://refhub.elsevier.com/S1383-7621(25)00218-8/sb7
http://refhub.elsevier.com/S1383-7621(25)00218-8/sb7
http://refhub.elsevier.com/S1383-7621(25)00218-8/sb7
http://refhub.elsevier.com/S1383-7621(25)00218-8/sb7
http://refhub.elsevier.com/S1383-7621(25)00218-8/sb7
http://refhub.elsevier.com/S1383-7621(25)00218-8/sb7
http://refhub.elsevier.com/S1383-7621(25)00218-8/sb7

S. Heo et al. Journal of Systems Architecture 168 (2025) 103546
[8] C. Lattner, V. Adve, LLVM: A compilation framework for lifelong program anal-
ysis & transformation, in: Proceedings of the International Symposium on Code
Generation and Optimization: Feedback-Directed and Runtime Optimization,
CGO ’04, IEEE Computer Society, USA, 2004, p. 75.

[9] J. Gutiérrez-Zaballa, K. Basterretxea, J. Echanobe, Evaluating single event upsets
in deep neural networks for semantic segmentation: An embedded system
perspective, J. Syst. Archit. 154 (2024) 103242, http://dx.doi.org/10.1016/j.
sysarc.2024.103242.

[10] K. Georgiou, C. Blackmore, S. Xavier-de Souza, K. Eder, Less is more: Exploiting
the standard compiler optimization levels for better performance and energy
consumption, in: Proceedings of the 21st International Workshop on Software
and Compilers for Embedded Systems, SCOPES ’18, Association for Computing
Machinery, New York, NY, USA, 2018, pp. 35–42, http://dx.doi.org/10.1145/
3207719.3207727.

[11] A. Sachan, B. Ghoshal, Learning based compilation of embedded applications
targeting minimal energy consumption, J. Syst. Archit. 116 (C) (2021) http:
//dx.doi.org/10.1016/j.sysarc.2021.102116.

[12] Y. ni, X. Du, Y. Yuan, R. Xiao, G. Chen, Tsoa: a two-stage optimization approach
for GCC compilation options to minimize execution time, Autom. Softw. Eng. 31
(2024) http://dx.doi.org/10.1007/s10515-024-00437-w.

[13] M. Peker, O. Ozturk, Fast compiler optimization flag selection, in: Proceedings
of the 34th International Workshop on Rapid System Prototyping, RSP ’23,
Association for Computing Machinery, New York, NY, USA, 2024, pp. 1–5,
http://dx.doi.org/10.1145/3625223.3649273.

[14] Y. Li, C. Wang, Constraint based compiler optimization for energy harvesting
applications, in: K. Ali, G. Salvaneschi (Eds.), 37th European Conference on
Object-Oriented Programming, ECOOP 2023, in: Leibniz International Proceed-
ings in Informatics (LIPIcs), vol. 263, Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, Dagstuhl, Germany, 2023, pp. 16:1–16:29, http://dx.doi.org/10.
4230/LIPIcs.ECOOP.2023.16, URL https://drops.dagstuhl.de/entities/document/
10.4230/LIPIcs.ECOOP.2023.16.

[15] V. Manjunath, M. Baunach, A framework for static analysis and verification of
low-level RTOS code, J. Syst. Archit. 154 (2024) 103220, http://dx.doi.org/10.
1016/j.sysarc.2024.103220.

[16] C. Zhang, F. Vahid, W. Najjar, A highly configurable cache architecture for
embedded systems, in: Proceedings of the 30th Annual International Symposium
on Computer Architecture, ISCA ’03, Association for Computing Machinery, New
York, NY, USA, 2003, pp. 136–146, http://dx.doi.org/10.1145/859618.859635.

[17] J. Lee, S. Kim, An energy-delay efficient 2-level data cache architecture for em-
bedded system, in: Proceedings of the 2009 ACM/IEEE International Symposium
on Low Power Electronics and Design, ISLPED ’09, Association for Computing
Machinery, New York, NY, USA, 2009, pp. 343–346, http://dx.doi.org/10.1145/
1594233.1594318.

[18] Y. Lee, S. Kim, CLAP: Clustered look-ahead prefetching for energy-efficient DRAM
system, IEEE Trans. Very Large Scale Integr. Syst. 24 (5) (2016) 1770–1782,
http://dx.doi.org/10.1109/TVLSI.2015.2488282.

[19] T. Mahmood, S. Hong, S. Kim, Ensuring cache reliability and energy scaling
at near-threshold voltage with macho, IEEE Trans. Comput. 64 (6) (2015)
1694–1706, http://dx.doi.org/10.1109/TC.2014.2339813.

[20] M.A. Rouf, S. Kim, Low-cost control flow protection via available redundancies
in the microprocessor pipeline, IEEE Trans. Very Large Scale Integr. Syst. 23 (1)
(2015) 131–141, http://dx.doi.org/10.1109/TVLSI.2013.2297573.

[21] A. Petruccelli, Strength Reduction Techniques in Compilers for Optimizing
Inference on Edge Devices (Ph.D. thesis), uppsala university, 2025, URL https:
//urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-551565.

[22] P. Mu, N. Mavrogeorgis, C. Vasiladiotis, V. Tsoutsouras, O. Kaparounakis, P.
Stanley-Marbell, A. Barbalace, Cosense: Compiler optimizations using sensor
technical specifications, in: Proceedings of the 33rd ACM SIGPLAN International
Conference on Compiler Construction, in: CC 2024, Association for Computing
Machinery, New York, NY, USA, 2024, pp. 73–85, http://dx.doi.org/10.1145/
3640537.3641576.

[23] G. Gobieski, A. Nagi, N. Serafin, M.M. Isgenc, N. Beckmann, B. Lucia,
MANIC: A vector-dataflow architecture for ultra-low-power embedded systems,
in: Proceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO ’52, Association for Computing Machinery, New York,
NY, USA, 2019, pp. 670–684, http://dx.doi.org/10.1145/3352460.3358277.

[24] H. Peng, A. Gupte, N.J. Eliopoulos, C.C. Ho, R. Mantri, L. Deng, W. Jiang, Y.-H.
Lu, K. Läufer, G.K. Thiruvathukal, J.C. Davis, Large language models for energy-
efficient code: Emerging results and future directions, 2024, arXiv:2410.09241.
URL https://arxiv.org/abs/2410.09241.

[25] I. Sofianidis, V. Konstantakos, S. Nikolaidis, Reducing energy consumption in
embedded systems applications, Technologies 13 (2) (2025) http://dx.doi.org/10.
3390/technologies13020082, URL https://www.mdpi.com/2227-7080/13/2/82.
10
[26] F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M. O’Boyle, J. Thomson,
M. Toussaint, C. Williams, Using machine learning to focus iterative optimization,
in: International Symposium on Code Generation and Optimization, CGO’06,
2006, p. 11, http://dx.doi.org/10.1109/CGO.2006.37, pp.–305.

[27] A.H. Ashouri, G. Mariani, G. Palermo, E. Park, J. Cavazos, C. Silvano, COBAYN:
Compiler autotuning framework using Bayesian networks, ACM Trans. Arch.
Code Optim. 13 (2) (2016) http://dx.doi.org/10.1145/2928270.

[28] G. Suzuki, T. Watanabe, S. Moriguchi, Mruby on resource-constrained low-power
coprocessors of embedded devices, in: Proceedings of the 21st ACM SIGPLAN
International Conference on Managed Programming Languages and Runtimes, in:
MPLR 2024, Association for Computing Machinery, New York, NY, USA, 2024,
pp. 41–47, http://dx.doi.org/10.1145/3679007.3685064.

[29] J. Zhang, Z. Zhang, S. Zhou, M. Tan, X. Liu, X. Cheng, J. Cong, Bit-level opti-
mization for high-level synthesis and FPGA-based acceleration, in: Proceedings of
the 18th Annual ACM/SIGDA International Symposium on Field Programmable
Gate Arrays, FPGA ’10, Association for Computing Machinery, New York, NY,
USA, 2010, pp. 59–68, http://dx.doi.org/10.1145/1723112.1723124.

[30] Y. Ko, B. Burgstaller, BEC: Bit-level static analysis for reliability against soft
errors, in: 2024 IEEE/ACM International Symposium on Code Generation and
Optimization, CGO, IEEE Computer Society, Los Alamitos, CA, USA, 2024, pp.
283–295, http://dx.doi.org/10.1109/CGO57630.2024.10444844.

[31] Known bits analyiss – LLVM documentation, 2025, https://llvm.org/docs/
GlobalISel/KnownBits.html. (Accessed 15 April 2025).

Seonyeong

Jiho

Woohyeop

Daehee

http://refhub.elsevier.com/S1383-7621(25)00218-8/sb8
http://refhub.elsevier.com/S1383-7621(25)00218-8/sb8
http://refhub.elsevier.com/S1383-7621(25)00218-8/sb8
http://refhub.elsevier.com/S1383-7621(25)00218-8/sb8
http://refhub.elsevier.com/S1383-7621(25)00218-8/sb8
http://refhub.elsevier.com/S1383-7621(25)00218-8/sb8
http://refhub.elsevier.com/S1383-7621(25)00218-8/sb8
http://dx.doi.org/10.1016/j.sysarc.2024.103242
http://dx.doi.org/10.1016/j.sysarc.2024.103242
http://dx.doi.org/10.1016/j.sysarc.2024.103242
http://dx.doi.org/10.1145/3207719.3207727
http://dx.doi.org/10.1145/3207719.3207727
http://dx.doi.org/10.1145/3207719.3207727
http://dx.doi.org/10.1016/j.sysarc.2021.102116
http://dx.doi.org/10.1016/j.sysarc.2021.102116
http://dx.doi.org/10.1016/j.sysarc.2021.102116
http://dx.doi.org/10.1007/s10515-024-00437-w
http://dx.doi.org/10.1145/3625223.3649273
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2023.16
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2023.16
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2023.16
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2023.16
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2023.16
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2023.16
http://dx.doi.org/10.1016/j.sysarc.2024.103220
http://dx.doi.org/10.1016/j.sysarc.2024.103220
http://dx.doi.org/10.1016/j.sysarc.2024.103220
http://dx.doi.org/10.1145/859618.859635
http://dx.doi.org/10.1145/1594233.1594318
http://dx.doi.org/10.1145/1594233.1594318
http://dx.doi.org/10.1145/1594233.1594318
http://dx.doi.org/10.1109/TVLSI.2015.2488282
http://dx.doi.org/10.1109/TC.2014.2339813
http://dx.doi.org/10.1109/TVLSI.2013.2297573
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-551565
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-551565
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-551565
http://dx.doi.org/10.1145/3640537.3641576
http://dx.doi.org/10.1145/3640537.3641576
http://dx.doi.org/10.1145/3640537.3641576
http://dx.doi.org/10.1145/3352460.3358277
http://arxiv.org/abs/2410.09241
https://arxiv.org/abs/2410.09241
http://dx.doi.org/10.3390/technologies13020082
http://dx.doi.org/10.3390/technologies13020082
http://dx.doi.org/10.3390/technologies13020082
https://www.mdpi.com/2227-7080/13/2/82
http://dx.doi.org/10.1109/CGO.2006.37
http://dx.doi.org/10.1145/2928270
http://dx.doi.org/10.1145/3679007.3685064
http://dx.doi.org/10.1145/1723112.1723124
http://dx.doi.org/10.1109/CGO57630.2024.10444844
https://llvm.org/docs/GlobalISel/KnownBits.html
https://llvm.org/docs/GlobalISel/KnownBits.html
https://llvm.org/docs/GlobalISel/KnownBits.html

	Bit-level compiler optimization for ultra low-power embedded systems
	Introduction
	Background & Motivation
	Ultra Low-Power Embedded Systems
	Applications for Embedded Systems
	LLVM Compiler Infrastructure

	Compiler Design
	Bit Usage Analysis
	Data Width Optimization
	Conversion Operation Optimization

	Use Cases
	Efficient Fault-Tolerant Computing
	Bit-Banding Optimization

	Evaluation
	Experimental Setup
	Results

	Related Work
	Compilers for Low-Power Embedded Systems
	Bit-Level Compiler Analysis

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References

