
Received 23 May 2023, accepted 15 June 2023, date of publication 21 July 2023, date of current version 31 July 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3297888

Fuzzability Testing Framework for Incomplete
Firmware Binary
JIWON JANG 1, GYEONGJIN SON2, HYEONSU LEE2, HEESUN YUN2, DEOKJIN KIM3,
SANGWOOK LEE3, SEONGMIN KIM2, AND DAEHEE JANG 4, (Member, IEEE)
1Future Convergence Technology Engineering, Sungshin Women’s University, Seoul 02844, Republic of Korea
2Convergence Security Engineering, Sungshin Women’s University, Seoul 02844, Republic of Korea
3The Affiliated Institute of ETRI, Daejeon 34129, Republic of Korea
4School of Computing, Kyunghee University, Seoul, Gyeonggi 17104, Republic of Korea

Corresponding author: Daehee Jang (daehee87@khu.ac.kr)

This work was supported in part by The Affiliated Institute of Electronics and Telecommunications Research Institute (ETRI) under Grant
2023-062; in part by the National Research Foundation of Korea (NRF) Grant funded by the Korean Government [Ministry of Science and
ICT (MSIT)] under Grant 2021R1F1A1049957; in part by the Korea Institute for Advancement of Technology (KIAT) Grant funded by
the Korean Government through Ministry of Trade, Industry and Energy (MOTIE) (The Competency Development Program for Industry
Specialist) under Grant P0008703; and in part by MSIT under the ICAN [Information and Communications Technology (ICT) Challenge
and Advanced Network of Human Resource Development (HRD)] Program supervised by the Institute of Information and Communication
Technology Planning and Evaluation (IITP) under Grant IITP-2022-RS-2022-00156310, and Convergence security core talent training
business support program IITP-2023-RS-2023-00266615.

ABSTRACT Fuzzing is a practical approach for finding bugs in various software. So far, a number of
fuzzers have been introduced based on new ideas towards enhancing the efficiency in terms of increasing
code coverage or execution speed. The majority of such work predicates under the assumption that they
have sound executable binary or source code to transform the target program as a whole. However, in legacy
systems, source codes are often unavailable and even worse, some binaries do not provide a sound executable
environment (e.g., partially recovered firmware). In this paper, we provide FT-Framework: fuzzability testing
framework based on forced execution for binaries such as firmware chunks recovered in abnormal way
so that they are hard to execute/analyze from intended booting phase. The essence of our work is to
automatically classify functions inside a binary which we can apply coverage-guided fuzzing via forced
execution. We evaluate FT-Framework using PX4 and ArduPilot firmwares which is based on 32-bit ARM
architecture and demonstrate the efficacy of this approach and limitations.

INDEX TERMS Fuzzability, firmware binary, coverage-guided fuzzing, fuzzable function, binary fragment,
emulation based fuzzing.

I. INTRODUCTION
Since the introduction of coverage guided fuzzers [1], [2],
fuzzing became one of the most practical techniques to
discover software bugs and ultimately security vulnerabil-
ities [3]. Instead of relying on complex analyses, fuzzing
excavates vulnerabilities in a program by repeatedly exe-
cuting it with auto-generated inputs while monitoring code
coverage information and unexpected behaviors. Thanks to
its practicality, fuzzing techniques have been applied to com-
plex, real-world software such as browsers [4], [5], [6] and
kernels [7], [8], [9], leading to numerous zero-day vulner-
abilities. All such previous works provide their respectful

The associate editor coordinating the review of this manuscript and
approving it for publication was Jiafeng Xie.

insights in terms of improving the efficacy of fuzzers to
better find crashes and rapidly explores code coverage, and
so forth. However, they mostly require full source code of
the target program to apply their idea. Such techniques often
transform the entire program using compiler techniques, and
require full access to the hardware/software environment
to run the target program. Although uncommon, in legacy
systems, we often encounter situations where source code
is unavailable and even worse, the binary is incomplete to
execute (e.g., lack of library files, hardware component, boot-
ing script, etc). For example, the firmware recovered via
forensic techniques are unsound [10]. Figure 1 depicts hypo-
thetical scenario where Unmanned Aerial Vehicle (UAV) is
claimed in military operation and their firmware is partially
recovered.

77608
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0002-2418-5850
https://orcid.org/0009-0004-1844-0490


J. Jang et al.: Fuzzability Testing Framework for Incomplete Firmware Binary

FIGURE 1. A scenario where UAV is claimed in military operation due to
crash/hijack and their firmware being forensically recovered. In such
scenario, the recovered binary could be incomplete to execute.

Hypothetically, say, such firmware can only be analyzed
statically as there is no proper hardware/software (emulator)
environment to execute the firmware. Under such premise,
we investigate the following research questions: (i) to what
extent can we apply forced execution? (ii) how can we auto-
matically identify codes that we can apply forced execution?
(iii) can we apply coverage-guided fuzzing technique via
forced execution? In this paper, we introduce FT-Framework:
fuzzability testing framework based on forced execution.
High-level methodology is as follow: First, FT-Framework
trace all function’s execution paths to check external depen-
dency (e.g., system call). If a function (and all possible paths)
does not have such dependence, we refer to it as Executable
Function Fragment (EFF). Second, we automatically profile
EFFs to estimate if they have proper code structure to apply
fuzzing and integrate with fuzzers, thus fuzzable. Finally,
we import such fuzzable code fragments to coverage-guided
fuzzer via AFL-QEMU without source code. This concept
(attaching fuzzer to specific functions) is already established
in libFuzzer development [2]. However, the key difference is
that libFuzzer works based on source code and they require
developer’s detailed understanding for the target function’s
protocol; whereas we consider binary fragment without any
prior knowledge other than information we gather from auto-
mated binary profiling.

To profile EFF, we examine all possible code paths of
the function using the Depth-first search (DFS) algorithm.
To determine if a function meets EFF criteria, we search
for three cases that violate our purpose: (i) virtual call,
(ii) unidentified system calls, and (iii) basic block containing
interleaved data. If a function’s entire code path (including
sub-functions) do not contain any of such cases we accept
it as EFF. With EFFs, we apply automated profiling algo-
rithms. The key idea is to observe the forced execution
result based on function’s input parameter types. Ultimately,
we classify EFFs depending on such responses and narrow
down fuzzable functions. Then, we attach our stub program
(as in libFuzzer development) to fuzzable functions and
run fuzzer based on forced execution. The stub program is
responsible for connecting the interface (e.g., parameter pass-
ing) between coverage-guided fuzzer and fuzzable function
similarly to LLVMFuzzerTestOneInput entry point in
libfuzzer.

For evaluation, we use PX4 and ArduPilot UAV firmware
that are based on 32-bit ARM architecture. Addition-
ally, we test FT-Framework using Objdump of GNU

Binutils binaries as well. Through the experiments on three
types of commodity firmware and binary, we confirmed
that FT-Framework enables opportunities of coverage-guided
fuzzing against closed-source and incomplete firmware
binaries by recovering its executable chucks. Based
on analysis, we discuss further issues to be explored
towards improving the performance of fuzzability test-
ing in two perspectives: 1) how to expand the coverage
of forced execution and 2) how to handle false-positive
crashes.

The rest sections of the paper continue as follow:
we describe some backgrounds to better understand this
paper and summarize related works in section §II. In §III,
we explain detailed description and high-level explanation of
FT-Framework. In §IV and §V, we describe implementaion
details and its evaluation results regarding FT-Framework.
Finally, §VI discusses limitations and lessons learned, and
concludes in §VII.

II. BACKGROUND & RELATED WORK
A. AFL & AFL-QEMU
AFL is one of popular fuzzers optimized for increasing code
coverage, using genetic algorithm and mutation input data
properly, record changes to program control flows, and log
them to discover crashes. AFL by default requires source
code for instrumentation. AFL-QEMU, is a variation of AFL
to support binary only fuzzing based on QEMU. In AFL-
QEMU mode, code coverage is measured based on QEMU
basic-block translation mechanism and do not require special
compilation step.

B. COVERAGE-GUIDED FUZZING
Coverage-guided fuzzing has been recognized as an effective
software security test method in gray-box fuzzing. Coverage
refers to a measure of how much code has been executed
by measuring the execution flow of a program, and basic
block and edge coverage are commonly used as measures.
Coverage-guided fuzzing is useful because it has the char-
acteristic of automatically generating inputs in programs to
identify inputs that reach new parts and trigger exceptions
or vulnerable parts. Specifically, genetic algorithms generate
new inputs for each fuzzing round, which allows more bugs
to be discovered. AFL makes representative coverage-guided
measurements, and it has attained excellent results in several
studies. Several studies have proven excellent effects using
coverage-guided fuzzing [11], [12], [13], [14], [15].

It increases the probability of creating a new collision by
creating a new input to increase coverage.Methods capable of
measuring code coverage are often achieved through instru-
mentation [16]. The instrumentation code inserted together
at the time of compilation can verify which part a fuzzer
has searched for and which part has not been reached. The
instrumentation code has a characteristic that some overhead
occurs. Studies on how to handle this effectively are being
actively conducted [17], [18], [19].

VOLUME 11, 2023 77609



J. Jang et al.: Fuzzability Testing Framework for Incomplete Firmware Binary

C. EMULATION-BASED FUZZING
Several previous studies have adopted emulation methods to
fuzz a special environment like firmware binary. As firmware
runs, it exchanges numerous interactions with hardware in
real time. Emulation solves areas that must interact with real
hardware, such as requesting access to peripheral devices
[13], [20], [21], [22], [23], [24], [25].

The emulation of firmware often uses QEMU. The QEMU
has an overall system-emulation mode and a user-emulation
mode. The user-emulation, which can emulate a specific part
of the firmware, performs firmware emulation-based fuzzing.

Several problems must be solved to emulate firmware.
Classic problems with firmware-emulation fuzzing include
performance-degradation problems and compatibility prob-
lems caused by emulation. Firm-AFL [21] solved this
through augmented process-emulation technology. Avatar
[24], a famous framework, developed technologies to
improve system performance. Avatar, a combination of hard-
ware and software emulation, reduced the occurrence of
problems by processing memory access when analyzing
device-dependent firmware.

D. ArduPilot & PX4
ArduPilot is an open-source project to control UAVs [26].
PX4 [27] (Pixhawk project) is also an open-source UAV
software that was developed as a sub-project of ArduPilot.
These two software are famous in UAV market and their
codebase is large, thus we use these software as our test target
firmware.

E. FIRMWARE EXTRACTION
The simplest method for extracting firmware is to down-
load it if the manufacturer discloses and provides it via
web-site. However, this is often not the case; in such case,
analyst utilizes code-extracting tools or firmware-analysis
tools. A famous tool for firmware analysis is Binwalk.
Binwalk uses a file signature to verify the contained data.
Because firmware-binary extraction is quite difficult, various
researches exist solely for this direction. For instance, firma-
dyne [28] is a previous study that supports extracting and
analyzed Linux-based embedded firmware binary in efficient
way.

F. PARTIAL BINARY FUZZING
The AFL is designed to fuzz programs with source codes.
Therefore, if there is only a binary of the object to be fuzzed,
a new methodology should be developed instead of the orig-
inal widely used method.

This situation has several names, such as closed-source
code, blob, and professional device (software). This situa-
tion is related to intellectual property rights or can occur in
specific scenarios such as our paper. Previous studies dealing
with these special situations include software from major
companies that do not disclose source codes, WINNIE [29],
which fuzzed Windows programs, and APICraft [30], which

fuzzed macOS SDK, a toolkit used for app builds for MAC.
Additionally, papers preparing for the environment, which are
various closed-source codes, are being actively studied [31],
[32], [33].

Various attempts are being made to fuzz firmware binary
covered in our paper. The need to analyze firmware binaries
has increased because the era of IoT has opened, and various
unmanned mobile devices have been discovered. The most
important thing in an environment where firmware binary is
fuzzing is that it is a closed-source code and is significantly
influenced by hardware. There are several studies, including
studies dealing with UEFI Firmware [11], Firmware Base-
band [34], [35], [36], and IoT [12], [20], [21], [22].

Furthermore, there has been a significant amount of
research focused on fuzzing only specific parts of binary.
Partial binary fuzzing refers to intensively fuzzing the desired
part of the user instead of fuzzing the entire system. If fuzzing
is performed on the entire system, temporal and computing
resources are unnecessarily consumed. At this time, efficient
bug search is possible by performing binary fuzzing for a spe-
cific part [37]. To increase coverage, the method of weighing
on less visited coverage [34], partial binary fuzzing can be
performed in numerous ways, such as identifying areas where
bugs are expected to occur and performing them further [37],
[38], [39].

It is also necessary when the entire emulation is unrealistic.
For example, when it is restored by forensics or when the
binary is partially damaged, partial binary fuzzing may need
to be performed. Therefore, a method for fuzzing only a
specific part of the entire system is being studied. Previous
studies have proposed a method for performing fuzzing by
designating the part to be explored [40]. Our study performs
fuzzing on the functional unit of the part responsible for a
specific function of the entire system. Through this, it is
possible to prepare for situations in which binary is not intact.

On the other hand, executing partial binaries can cause
False-Positive problems, which poses a major challenge and
research question from the perspective of accurate bug detec-
tion. Specifically, False-Positives might occur when control
flow information for target code is not sufficient. For exam-
ple, without understanding the semantic of preprocessed
input data (in parent function) before reaching the target
function (fuzzed one), it is hard to determine if a crash is
indeed a bug or if the given input can be passed to the target
function in real situation. In this study, we partially addressed
such False-Positive issue by adding a preprocessing stage
that heuristically guessing the expected input format through
parameter profiling(See §III-C).

FOCAL is a recently proposed Concolic software test-
ing methodology, which is a Concolic testing technique for
detecting software bugs, and it is a study that increases
efficiency in bug exploration by hybridizing unit tests and
system-level tests. In this research, unit testing is performed
for all functions within the program, but this approach
also raises false alarms mainly due to parameters exceed-
ing the expected range. FOCAL tries to eliminate such

77610 VOLUME 11, 2023



J. Jang et al.: Fuzzability Testing Framework for Incomplete Firmware Binary

FIGURE 2. FT-Framework overview. The target firmware binary is given to FT-Framework to apply fuzzing against small portions of
the binary. There are three phases in processing the binary fragment for fuzzing. First, we pre-process the binary to enumerate all
functions. Second, we determine if they are fuzzable in our perspective. After analysis, selected functions are ported to apply
coverage-guided fuzzing.

‘infeasible unit execution’ problem with their idea ‘context
stitching’.

Within the FOCAL Framework, there is a phase that mea-
sures the relevance between functions by analyzing functions
that are frequently called in close sequence and assume they
have high relevance (i.e., it would be a caller-callee rela-
tionship). Based on this, the previous functions are gradually
inferred, the size is extended a bit from the initial single func-
tion, and the candidate input (which may have been a false
alarm) that caused the failure is tested repeatedly. We added
discussion in §VI regarding how we can utilize FOCAL idea
with our approach.

G. PARAMETER PROFILING
A parameter profiling infers a parameter of a function. This
task is conducted to provide the correct input seed based on
the format. For instance, unlike general variables, a pointer
has an address value and utilizes this address; thus, an address
value that does not exist should not be defined. Because
there is such a difference in expected input values, errors
may occur if the pointer is not identified. Previous studies
for identifying the input format include FuzzGen, WINNIE,
PMP, and Ramblr [29], [41], [42], [43].
FuzzGen is a study of Linux systems and is a tool that

automatically matches the interface of the expected API. Fuz-
zGen deliberately continues to summon calls for api to infer
the effective api interaction, and through this process, the
fuzzer stub is configured to match the expected interface [41].
WINNIE, which performed a study on Windows systems,
deduced the number and type of parameters using parameter
static and dynamic analyses, and executed more than twice
for an argument that was preemptively considered a pointer,
considering the characteristics of aslr. If different addresses
were indicated, a method for identifying pointers through

heuristics considered to be pointers was taken [29]. PMP is
also a method for considering a pointer if the function to
be determined points to somewhere in the memory address
using heuristic [42]. Reassembly, a technology used to make
a new program that includes the binary of closed-source
code situations as an additional function, requires a task to
infer parameters. This is because symbolization, in which
the relative symbol is readjusted according to the absolute
address, must be performed to rewrite the desired binary. This
is a task that has problems to be solved, and Ramblr presented
a detailed methodology for solving it [43]. For successful
symbolization, a content classification, such as a profiling
operation is performed. By recovering and analyzing binary
CFGs (control flow graphs), instructions and data access
patterns are analyzed to form a jump table, and through this
process, data types, such as pointers, integers, shorts, floats,
and doubles are identified.

Parameter profiling towards closed-source code is being
actively studied. This study classifies functions with high
crashable possibility by verifying the results of function
execution based on candidate and inferring parameters and
internal structure of functions. Through this work, meaning-
less fuzzing targets were selected.

III. DESIGN
In this section, we explain the overall design and provide
detailed descriptions of FT-Framework. Figure 2 shows the
overall description of FT-Framework. There are three phases
in FT-Framework: extraction, analysis, combination phases.

A. EXTRACTION PHASE
In the extraction phase, we use existing firmware extrac-
tion tools to correctly disassemble the target binary

VOLUME 11, 2023 77611



J. Jang et al.: Fuzzability Testing Framework for Incomplete Firmware Binary

for proper analysis to classify functions. Most firmware
including our evaluation target (PX4, Ardupilot) is
often compressed/encoded with various packing algo-
rithms. Decompressing/decoding such binary fragments is
challenging because we do not have the complete informa-
tion/environment of the binary.

Accurately recovering the entire binary from undocu-
mented data format is a challenge itself; however, if our goal
is running a function via forced execution, complete code
dependency is not required. One of amajor problem in incom-
plete binary information is interleaved data problem. This
issue is not a problem in other binary-analysis frameworks
where they have complete binary. We provide a detailed
explanation of this issue in the following subsections.

B. ANALYSIS PHASE
The analysis phase determines if a function is classified as
EFF. For reminder, EFF means that all reachable codes for
the function do not depends on external/additional binary
(i.e., runtime shared library such as Windows DLL or Linux
binaries) or external data source other than memory (e.g.,
specific I/O operation, network/disk-related system calls).
A function is classified as EFF if all instructions in potential
execution paths are independently executable satisfying the
aforementioned requirements.

To find EFF, FT-Framework utilizes blacklist approach by
identifying functions that violate the classification require-
ment and removing them from the EFF list that initially
contains entire set of functions. For classification, we con-
sider basic block as vertex and branch as edge of graphs and
run DFS algorithm to enumerate the entire code path of a
function. The function address is added to the blacklist if
we discover any violation of our rule. This blacklist-based
approach speeds up the classification performance. For exam-
ple, if we categorize a function as a blacklist, all other
functions internally nesting such function can be automati-
cally categorized as blacklist. Classification results into three
types.

Figure 3 describes three result cases in FT-Framework.
In Case1 a function does not encounter any case we con-
sider as blacklist. Such functions can execute its internal
set of instructions without depending on external code/data
source. These functions are interesting in our perspective
and we mount them with fuzzers. Case2 can run indepen-
dently with minor effort. For example, some system calls
are trivial in terms of fuzzing. In such cases, we can simply
remove/patch/emulate the calls and continue the execution
without affecting the fuzzing process. A representative exam-
ple would be getting time information via system call for
debug/logging purposes. Case3 is a blacklist case which
FT-Framework does not consider for fuzzing.

There are three main reasons we filter out a function
from being EFF: virtual call, system call, and interleaved
data.

FIGURE 3. Fuzzability test of FT-Framework. The figure shows three cases
of analysis results. The first case does not encounter any blacklisted
situation; thus, it is categorized as EFF. The second case is problematic
but can be solved using a minor patch or heuristic approach. The third
case fails independent execution owing to blacklisted instructions.

FIGURE 4. Virtual call case in ARM disassembly. Branch target in R3 is
calculated at runtime and it is difficult to estimate its value via static
analysis.

1) VIRTUAL CALL
Virtual call is a representative case that cannot be determined
as EFF through FT-Framework. In virtual call, the invoked
function’s address is dynamically calculated at runtime. For
virtual calls, the target address of the invoked function is dif-
ficult to deduce via static analysis because the target branch
address is dynamically calculated using memory and register
operations at runtime.

Figure 4 is an example of virtual call in ARM architecture.
In the figure, program branches to a target memory address
stored inside R3 register and its value is retrieved from the
memory address indicated by R3 with offset 0 × 20. Data
inside such a memory address is unknown at the static analy-
sis time and determined at runtime. However, it is difficult to
assess if such virtual call will jump to the in-bound region of
the given binary fragment. Therefore, in virtual call, we can-
not determine if the function will normally execute with the
given set of binary. Consequently, FT-Framework classifies it
as a blacklist function.

77612 VOLUME 11, 2023



J. Jang et al.: Fuzzability Testing Framework for Incomplete Firmware Binary

FIGURE 5. Interleaved data case in IDA Pro. If the binary is intact,
identifying such interleaved data is relatively easy because there is
cross-referencing information.

FIGURE 6. Misinterpreted interleaved data. Branch target in the figure
(0 × 8102806) is invalid. However, disassembly based on incomplete
binary is considered a valid branch.

2) UNIDENTIFIED SYSTEM CALLS
System call falls into the blacklist category because its branch
target is inside the operating system kernel. Generally, sys-
tem calls allow user applications to execute the privileged
commands by switching from user mode to kernel mode,
and their code bases are separated from one to another.
If the binary is based on a specific operating system, system
call identification is non-trivial. For a typical POSIX-based
operating system binary, some system calls might be easily
interpreted. If system calls are identifiable, some of them
can be trivially emulated (example, getpid()). However,
in other environments, emulating/analyzing system call is
non-trivial because they do not provide any documentation
regarding their application binary interface (ABI). Therefore,
FT-Framework treats system calls as blacklist cases. How-
ever, kernel code can be merged as a single statically linked
code in embedded systems such as UAV environments as part
of the firmware image. In that case, system calls can be treated
same as ordinary function calls.

3) BASIC BLOCK CONTAINING INTERLEAVED DATA
Interleaved data is a data fragment inserted in the middle
of a code. As the Figure 5 shows, this data/code layout is
often observed in RISC-architecture-based compilers such
as ARM. ARM compilers often locate data in the middle
of the code segment because of the RISC CPU’s memory-
addressing feature.

Therefore, such interleaved data may be misinterpreted
as a code in FT-Framework due to the lack of code bound-
ary information. This issue is less problematic in generic
binary-analysis tools because they have complete information
regarding the entire binary layout and headers. However,
for FT-Framework, this issue becomes difficult to handle
because the binary can be incomplete and often lacks header
information. Particularly, such a case becomes a problem if
data is misinterpreted as branch instruction (i.e., data that
coincidentally have the same value as BL instruction-code
prefix in ARM architecture), as shown in Figure 6.
In such cases, FT-Framework explores a non-existent

or wrong portion of the binary, and its analysis results

FIGURE 7. FT-Framework further classifies a function that can detect a
crash with fuzzing technology in a function group previously classified as
EFF, that is, crashable, through parameter profiling.

become wrong. Therefore, accurately identifying interleaved
data fragments inside a function code is a challenge in
FT-Framework. We use a heuristic approach to classify
instruction as interleaved data if (i) opcode is unknown and
(ii) branch target address is outside the binary range while the
opcode is a legitimate branch.

C. COMBINATION PHASE
After classifying EFF, crashable functions, FT-Framework
continues to the next phase, which combines such functions
to a coverage-guided fuzzer. FT-Framework provides a stub
(wrapper) program similar to that in libFuzzer to connect the
fuzzing interface to the target function. However, being EFFs
is not enough to apply proper fuzzing because of additional
dependencies such as referencing a global variable, refer-
encing file. Also for proper fuzzing, a function must take
some arbitrary input (e.g., via function parameter). Therefore,
among EFFs, only the subset of them are additionally classi-
fied as fuzzable.

Figure 7 summarizes the fuzzable (or crashable) target
categorization performed by FT-Framework. In our paper, a
fuzzable function must take at least one pointer variable as
its input argument. If the function satisfies such requirement,
we pass fuzzer’s input as a pointer via R0 to R3 using in-line
assembly code which is a standard ARM parameter passing
channel. FT-Framework uses AFL-QEMU-ARM32 as fuzzing
engine which can measure coverage based on binary without
source code.

1) PARAMETER PROFILING
Parameter profiling is the process of inferring parameters
through responses observed during the forced execution of
the program. Profiling function parameters is required to
narrow down Fuzzable functions among EFFs. With profil-
ing, we additionally identify information regarding function
parameter. For example, a function that does not receive input
is meaningless for fuzzing because it does not take input.1

To profile a function parameter, we force executing a
function with various parameters. For instance, if we force
executing a function with read-only pointer as first argument

1We only assume inputs being passed via parameters, however, a function
can take input in different ways such as global memory buffer. this is
limitation of our paper.

VOLUME 11, 2023 77613



J. Jang et al.: Fuzzability Testing Framework for Incomplete Firmware Binary

and observe segmentation fault; whereas we do not observe
such error with read/write pointer (pointing exact same mem-
ory contents), we can reasonably suspect the function is using
first pointer argument as an output pointer.

IV. IMPLEMENTATION
Our implementation is based on Python3; Pwntool and Cap-
stone library to disassemble the binary and obtain function
information. After basic binary analysis, DFS algorithm is
used to visit all basic blocks of the given binary. When a basic
block contains a function call instruction, DFS recursively
trace all the child functions.

A. EFF CLASSIFICATION
In our implementation, blacklists are considered into three
categories.

The first category is a virtual call. If the disassemble result
includes bl, blx, and bx instructions corresponding to a
function call, the argument is also examined. If the argument
is neither a link register (LR) nor a constant (address value),
the instruction is considered as a virtual call.

Algorithm 1 Virtual Call
branches = [‘‘bl’’, ‘‘blx’’, ‘‘bx’’]
if instruction ∈ branches then

operand = get_operand(instruction)
if operand ̸= ‘‘linkregister’’ | operand ̸= constant

then
blacklist.append(operand)

end if
end if

The second category is a system call. If the disassemble
result includes swi and svc instructions, they are classified
as the system call.

Algorithm 2 System Call
branches = [‘‘swi’’, ‘‘svc’’]
if instruction ∈ branches then

systemcall.append(address)
end if

To determine if an instruction is interleaved data, we use
aforementioned heuristics: (i) opcode is unknown and (ii)
branch target address cannot be referenced. Additionally,
every upper functions of the three categories are also included
in the blacklist.

B. PARAMETER PROFILING AND FUZZER PORTING
Profiling is conducted to improve the efficiency of the
FT-Framework. Profiling classifies the function by gathering
the results of its execution (forced) upon various parameter
types. If it delivers the parameter form (data type) that the
function does not expect to process, there is a high probability
of errors such as crashes. FT-Framework can save time com-
pared to fuzzing an entire binary by pre-screening functions

Algorithm 3 DFS
function DFS(address, visited, blacklist)

if address /∈ visited & address /∈ blacklist then
run DFS

else if address ∈ visited & address /∈ blacklist then
pass one branch line

else
blacklist.append(visited function) ▷ Add the

address of the function and parent function
end if

end function

that are not worth fuzzing through profiling. Functions other
than EFF are not included in the profiling candidate. To force
the execution of a target function, we write a wrapper code,
which is responsible to map the target function as a dynam-
ically loaded library (or, similarly to shellcode in computer
virus) into memory and invoke a function pointer pointing
the loaded memory.

The wrapper code is automatically compiled and executed
with python script for profiling evaluation. Candidate param-
eter types for profiling are: (i) null, (ii) number, (iii) pointer,
and (iv) double pointer. The pointer reference an arbitrary
string, and the double pointer reference another pointer. The
execution result for each parameter of the function can be
inferred through the python subprocess return code.
The code is zero for normal termination, -11 for segmen-
tation fault, and -4 for incorrect CPU state, which is a
characteristic of ARM binary. We gather these information
in .csv file to confirm the results of each functions. In some
cases, execution results could not be identified owing to
infinite loops, and these cases are handled using a timeout.
All functions are executed for 30 secondes for profiling, and
functions that do not end within that time window are marked
as infinite. Finally, we use a small wrapper code which
articulates the target binary to AFL++ fuzzer.

There are two ways in which AFL++ takes input: stdin
and file. In the proposed methodology, input is received and
processed in the form of a file. These processes proceed with
binarymappingwithin the wrapper code. To transfer the input
value received by the file as a function parameter, a memory
buffer is created, file data is copied, and the pointer of the
memory buffer is handed over to the target function to be
fuzzed as a parameter. Finally, the fuzzing is initiated by
delivering the address of the target function.

V. EXPERIMENTATION & EVALUATION
In this section, we evaluate the functionality of FT-Framework
that can determine the fuzzability of EFF. We applied
FT-Framework for UAV firmware binaries such as PX4,
ArduPilot, based on the proposed methodology. In addition
to firmware, we applied FT-Framework to Objdump binary in
Binutils, a typical Linux binary. Table 1 is a result of Analysis
Phase for PX4, ArduPilot, and Objdump binaries. C1, C2,

77614 VOLUME 11, 2023



J. Jang et al.: Fuzzability Testing Framework for Incomplete Firmware Binary

TABLE 1. Summary for PX4, Ardupilot, Objdump. This table is a result of
Analysis Phase for PX4, Ardupilot, Objdump binary. C1, C2, and C3 in the
column indicates virtual call, system call, and Interleaved data,
respectively. In PX4 and ArduPilot, about half of the total number of
functions were fuzzable. However, in case of Binutils, one third of
functions are classified to be fuzzable.

FIGURE 8. Parameter profiling automatically filters out functions that do
not interact with any parameters.

and C3 in the column indicates virtual call, system call, and
interleaved data, respectively.

In PX4 and ArduPilot, approximately half of the total num-
ber of functions are EFFs. However, in the case of Binutils,
one third of functions are classified to be EFFs. When we
applied FT-Framework to PX4 binary, 552 out of 10,093 func-
tions were classified as virtual call, seven as system call, and
37 as interleaved data cases, as shown in table1. The number
of final blacklists including upper functions in the previous
three cases was 4,510, the total number of the EFF was
5,583. The results of EFF functions through code-targeting
ArduPilot was 4,879 of 9,400 functions. They were classified
into 1,393 virtual call, 11 system call, and 19 interleaved
data cases. Result for classifying EFF functions for Objdump
binary shows 668 out of 2,280 functions. Among them, there
were 223 virtual call, one system call, and 60 interleaved data
cases. Notably, the sum of C1, C2, and C3 does not match
with the blacklist number because a function nesting any of
such cases is blacklisted without being counted.

A. PROFILING EFF
To profile EFFs, we select several types of input values,
using them as function parameters in forced execution, and
inferring parameters and functions with the execution results
during the execution. Candidate parameters were given as
null, number, pointer, and double-pointer types. The profiling
results for EFF were classified into five categories based
on the presence or absence of memory access violation as
summarized in Table 2.
Case-1 are functions normally returned for all candidate

parameter inputs, such as Figure 8.
Case-2, 3, 4 and 5 is summarized in the table respectively as

well based on the function’s response to the parameter type.
O indicates the function returned normally upon the given
parameter type, and X indicates function raised an error upon
the given parameter.

TABLE 2. There are five cases classified in the function-profiling phase of
the FT-Framework, where RW ptr is readable and writable pointer,
O indicates function normally returns upon the given parameter type
while X raises error.

FIGURE 9. Function that returned normally upon all parameter types.

Case-2 is a function that shows normal results only for one-
dimensional (e.g., byte buffer) pointer inputs capable of both
read and write. The function that belongs to this case takes a
one-dimensional array input. Based on the profiling results
with a one-dimensional array that can only read, the case
with both read and write pointers did not crash and showed
40 more normal responses based on the ArduPilot firmware.
Therefore, it was possible to distinguish functions including
write operations through these criteria.

Case-3 is a function that shows normal results only for
double-pointer inputs. It can be assumed that the correspond-
ing function is a function that uses complex objects utilizing
double pointers (e.g., C++ this pointer).

Case-4 is a function that returns normal results for all three
inputs: a double-pointer, one-dimensional pointer that can
read and write, and one-dimensional pointer that can only
read. In this case, it shows the pattern shown in Figure 9, and
it can be estimated that the function is likely to receive the
pointer format.

Case-5 is a function in which a segmentation fault error
occurs for all candidate parameters, likes Figure 10. In this
case, it was suspected that the function depends on a global
variable or other external data source.

Through profiling, we can select a set that is worth fuzzing.
For example, in Case-1, the structure of the function is too
simple thus it is unnecessary to apply fuzzing. In Case-5,
additional analysis is required because the function is com-
plicated and might depend on global variables or results from
other data source thus excludes from fuzzable target.

The profiling experimental results are summarized
in Table 3. It was possible to reduce the crashable candidates
by 26% by excluding Case-1 (no parameters) from the total
EFF list. As a result of profiling evaluation, functions in the
firmware are classified as follows.

VOLUME 11, 2023 77615



J. Jang et al.: Fuzzability Testing Framework for Incomplete Firmware Binary

FIGURE 10. Red blocks indicates global variable reference, In this case,
the function is classified as Case-5.

TABLE 3. Fuzzable-function profiling result.

B. FUZZABILITY TESTING THROUGH FORCED EXECUTION
To evaluate the compatibility of FT-Framework, we con-
duct a forced execution against the profiled fuzzable
functions with the state-of-the-art coverage-guided fuzzer,
AFL++. Note that as we develop our stub program
based on libFuzzer mechanism to handle fuzzable func-
tions, coverage-guided fuzzers that utilize the library are
also compatible with FT-Framework. In this experiment, fuz-
zability was thoroughly investigated for 3,522, 3,546, and
485 EFFs in the PX4, ArduPilot and objdump binaries,
respectively.

Once we applied fuzzer, we largely observe four different
types of responses: (i) normal fuzzing, (ii) fuzzer refuse to
run, (iii) crash is discovered too shortly, (iv) fuzzer hangs.
In our evaluation, we spent approximately 10 seconds for
each function to apply fuzzing. In the third response case,
we analyzed that the instant crash is mostly due to the fuzzer
mangling the function’s specifically expected parameter for-
mat (e.g., passing object/structure). Such a crash should not
be considered as a bug. We also note that distinguishing such
a crash from a real bug is outside the scope of this paper (We
discuss this issue in §VI).

As an evaluation result, we show three tables (Table 4,
Table 5, Table 6) that summarize the fuzzability testing
for each functions in our target binaries. Fuzzable means
successful porting to fuzzer, and crashed indicates fuzzer
quickly crashed upon testing nevertheless successfully port-
ing. And not fuzzable indicates fuzzer refused to run, the

TABLE 4. Experiment results of the PX4 functions.

TABLE 5. Experiment results of the ArduPilot functions.

TABLE 6. Experiment results of the Objdump functions.

percentage shown in the table refers to the ratio of the
not fuzzable function within the corresponding case. Lastly,
total is the total number of functions inside the target
binary.

In summary, 42.9% (PX4), 58.5% (ArduPilot), and 45.4%
(Objdump) number of fuzzable functions were applicable
to the vanilla fuzzer among the candidate EFFs. Success-
fully porting the EFFs to a fuzzer does not imply that
such functions are worth applying fuzzing techniques and
fully addressing the probabilistic coverage of finding bugs.
Nevertheless, it is worth noting that FT-Framework enables
automatically extracting information from unknown binary
fragments to classify candidate functions that are potentially
vulnerable based on forced execution.

In order to accurately evaluate the precision of our heuristic
classification methods, ground truth is required. However,
obtaining such ground truth data from incomplete binary
fragment in a systematic way is extremely challenging;
thus require additional research. In our work, although it
is not systematic, we have verified the precision of our
classification heuristics based on manual reverse-engineering
effort with sample cases (e.g., Figure 8, Figure 9, and
Figure 10).

77616 VOLUME 11, 2023



J. Jang et al.: Fuzzability Testing Framework for Incomplete Firmware Binary

VI. DISCUSSION
In this section, we discuss the applicability scope of
FT-Framework for bug detection and a couple of limitations
in our work with the suggestion for further improvement.

A. AIM AND SCOPE OF FT-Framework
This work aims to design and implement a framework that
enables coverage-based fuzzing even with partial binary frag-
ments rather than focusing on improving the fuzzing perfor-
mance and precision. The point here is to facilitate fuzzability
for broken or incomplete binaries incompatible with existing
fuzzers. To achieve this goal, we attempt to scrap potential
candidates for the further fuzzing process from binary frac-
tions with static analysis only, and subsequently, we first
need to discuss the fuzzable. Our paper divided them into
EFF(Executable Function Fragments) and functions that are
portable to fuzzers, which means fuzzable, and utilized a
blacklist approach to identify them. By demonstrating the
throughout fuzzing execution for real-world examples even
without a full-system or running environment, we showed
that FT-Framework empowers fuzzability by diagnosing and
pre-processing target functions.

We also note that FT-Framework can be utilized to enhance
the efficiency of existing coverage-guided fuzzers. For exam-
ple, FT-Framework allows investigators to concentrate more
on analysis and fuzzing partial path, not the entire code cov-
erage, from the given complete binary. This feature has long
been presented as an effective bug detection methodology
because it reduces relatively more search space [44], [45],
[46], [47]. In particular, FT-Framework can be used to prior-
itize various types of function cases included within a binary
for bug detection. Specifically, in Case-1, which does not
require parameters, users cannot trigger a bug even if it exists.
Therefore, filtering-out such cases and rather focusing on the
rest of the function types can increase efficiency, as discussed
in [44].

A previous study [48] presented a methodology that scores
to select fuzzable functions based on several criteria by per-
forming static analysis, but it differs from FT-Framework in
several perspectives. Likewise to our study, they analyzed the
inside of a specific function using depth-search algorithms.
In contrast to the goal of our paper, which attempted to
determine the fuzzable of a particular function, they focused
on identifying functions with a high probability of the occur-
rence of a crash depending on the complexity of the deep
function. FT-Framework identified and classified low-level
instructions that cause issues in independent execution by
assuming that the binary may be incomplete. However, the
related study does not assume such a restricted condition.

Second, the intended definition of the terminology fuzz-
able is slightly different with our proposal. The meaning of
fuzzable in the previous study is also an ability to fuzz with
a function unit, but rather, it focuses on the fact that it is
more likely to cause an occurrence of crashes when fuzzing is
performed. However, it does not guarantee that such functions

are actually compatible with the existing fuzzers even if there
may be actual crashes. On the other hand, FT-Framework
supports the entire steps starting from extracting potential
candidates to porting them to fuzzers as an actual inde-
pendent unit, which means that it is fully compatible with
the existing coverage-guided fuzzing procedure. We believe
leveraging ideas of [48] would have a complementary effect
on improving the limitations of FT-Framework on excavating
true crashes (See §VI-B).

B. LIMITATIONS AND LESSON LEARNED
The first is the necessity for additional work for function
identification in profiling Case-5. FT-Framework delivers
arbitrary data by forcibly calling a function in the program
rather than through the normal data-transfer path of the pro-
gram when delivering the input value to the target function
(EFF) to perform fuzzing. Therefore, Case-5 functions that
refer to global variables or require upper-level logic cannot
be executed normally. Thus, coverage-guided fuzzers such
as AFL++, which adds input values while executing the
program, produces inaccurate results. Consequently, the ver-
ification process at the previous step, such as the parent
function, disappeared, resulting in errors that cannot occur
through normal data delivery. An additional validation step
for the data delivered to the function should be addressed
to solve this problem. For example, additional information
can be added on top of FT-Framework such as control-flow-
graph, taint-analysis and increase the accuracy of function
profiling.

The second limitation is the lack implementation for emu-
lating system calls, thus, the coverage is slightly low. Asmen-
tioned in the previous section, functions containing system
calls are excluded fromEFF. However, some system calls can
be altered/patched to be suited for fuzzing through emulation.
For example, data-logging features, making a visual signal
(e.g., LED device) could be considered irrelevant to data
processing. System calls relevant to such features could be
simply erased or ignored. Additionally, emulating a system
call with fake results is another method for addressing this
issue (i.e., return random value for time related system
calls). Modifying/patching such system calls will result in
achieving more EFFs, and finally, expand the coverage. In a
previous study, external elements that are not necessarily
required for testing were disabled or simply access-patterned
to implement appropriate responses [49]. In system call emu-
lation, there are limitations due to unnecessary parts, but by
leveraging techniques that can be improved together, poten-
tial candidates (e.g. EFF) can be further obtained, resulting in
an increase in coverage. We leave this for future work.

Another key challenge to be addressed is to detect actual
bugs from the crashed EFFs. For example, unexpected false
alarms (crashed but not vulnerable) might occur when uti-
lizing FT-Framework, as it operates the partial fragments of
binaries by design.

VOLUME 11, 2023 77617



J. Jang et al.: Fuzzability Testing Framework for Incomplete Firmware Binary

To address such issue, there are orthogonal researches from
other literature. For example, FOCAL proposed an idea so-
called context stitching to gradually expand the range of
codes and test the feasibility of triggering specific crash. The
main idea is based on the observation that relevant codes
shows special sequence patterns in their invocation. Such
approaches can be applied to our framework and reduce the
false-alarm rate. We leave this issue as a limitation and open
problem for future research.

VII. CONCLUSION
In this paper, we introduce a framework that assess fuz-
zability to functions inside incomplete binaries such as
recovered firmware. Our implementation extracts fuzzable
functions from a given binary fragment and merges with
executable fuzzer stub to apply coverage-guided fuzzing
based on AFL-QEMU-ARM32. We evaluated our system
using PX4, ArduPilot firmware and GNU Binutils and suc-
cessfully applied coverage-guided fuzzing. Our study shows
that, at this point, additional efforts for accurately identify-
ing a function’s parameter format is required for practical-
ity. FT-Framework introduced a first line of work towards
fuzzing incomplete binary via forced execution and we hope
FT-Framework can inspire other researchers to this end.

ACKNOWLEDGMENT
(Jiwon Jang and Gyeongjin Son are co-first authors.)

REFERENCES
[1] M. Zalewski. (2014). American Fuzzy Lop. [Online]. Available:

http://lcamtuf.coredump.cx/afl/
[2] LLVM Project. (2015). libFuzzer—A Library for Coverage-Guided Fuzz

Testing. [Online]. Available: https://llvm.org/docs/LibFuzzer.html
[3] K. Serebryany, ‘‘Sanitize, fuzz, and harden your C++ code,’’ USENIX

Assoc., San Francisco, CA, USA, Jan. 2016.
[4] S. Park, W. Xu, I. Yun, D. Jang, and T. Kim, ‘‘Fuzzing Javascript engines

with aspect-preserving mutation,’’ in Proc. IEEE Symp. Secur. Privacy
(SP), May 2020, pp. 1629–1642.

[5] H. Han, D. Oh, and S. K. Cha, ‘‘CodeAlchemist: Semantics-aware code
generation to find vulnerabilities in Javascript engines,’’ in Proc. NDSS,
2019, pp. 1–15.

[6] C. Holler, K. Herzig, and A. Zeller, ‘‘Fuzzing with code fragments,’’ in
Proc. 21st USENIX Secur. Symp., 2012, pp. 445–458.

[7] Google. (2015). Syzkaller—Kernel Fuzzer. [Online]. Available: https://
github.com/google/syzkaller

[8] S. Schumilo, C. Aschermann, R. Gawlik, S. Schinzel, and T. Holz,
‘‘kAFL: Hardware-assisted feedback fuzzing for OS kernels,’’ in Proc.
26th USENIX Secur. Symp., 2017, pp. 167–182.

[9] S. Pailoor, A. Aday, and S. Jana, ‘‘MoonShine: Optimizing OS fuzzer seed
selectionwith trace distillation,’’ inProc. 27thUSENIX Secur. Symp., 2018,
pp. 729–743.

[10] S. Willassen, ‘‘Forensic analysis of mobile phone internal memory,’’ in
Proc. IFIP Int. Conf. Digit. Forensics. Cham, Switzerland: Springer, 2005,
pp. 191–204.

[11] Z. Yang, Y. Viktorov, J. Yang, J. Yao, and V. Zimmer, ‘‘UEFI firmware
fuzzing with Simics virtual platform,’’ in Proc. 57th ACM/IEEE Design
Autom. Conf. (DAC), Jul. 2020, pp. 1–6.

[12] Z. Gao, W. Dong, R. Chang, and Y. Wang, ‘‘Fw-fuzz: A code coverage-
guided fuzzing framework for network protocols on firmware,’’ Concur-
rency Comput., Pract. Exper., vol. 34, no. 16, pp. 1–15, Jul. 2022.

[13] D. Maier, B. Radtke, and B. Harren, ‘‘Unicorefuzz: On the viability of
emulation for kernelspace fuzzing,’’ in Proc. 13th USENIX Workshop
Offensive Technol., 2019, pp. 1–11.

[14] E. Johnson, M. Bland, Y. Zhu, J. Mason, S. Checkoway, S. Savage, and
K. Levchenko, ‘‘Jetset: Targeted firmware rehosting for embedded sys-
tems,’’ in Proc. 30th USENIX Secur. Symp., 2021, pp. 321–338.

[15] V. Herdt, D. Große, H. M. Le, and R. Drechsler, ‘‘Verifying instruction set
simulators using coverage-guided fuzzing,’’ in Proc. Design, Autom. Test
Eur. Conf. Exhib. (DATE), Mar. 2019, pp. 360–365.

[16] S. Nagy, A. Nguyen-Tuong, J. D. Hiser, J. W. Davidson, and M. Hicks,
‘‘Breaking through binaries: Compiler-quality instrumentation for bet-
ter binary-only fuzzing,’’ in Proc. 30th USENIX Secur. Symp., 2021,
pp. 1683–1700.

[17] C.-C. Hsu, C.-Y. Wu, H.-C. Hsiao, and S.-K. Huang, ‘‘InsTrim:
Lightweight instrumentation for coverage-guided fuzzing,’’ in Proc. Symp.
Netw. Distrib. Syst. Secur. (NDSS), Workshop Binary Anal. Res., 2018,
p. 40.

[18] C. Zhang, W. Y. Dong, and Y. Zhu Ren, ‘‘INSTRCR: Lightweight instru-
mentation optimization based on coverage-guided fuzz testing,’’ in Proc.
IEEE 2nd Int. Conf. Comput. Commun. Eng. Technol. (CCET), Aug. 2019,
pp. 74–78.

[19] D. She, R. Krishna, L. Yan, S. Jana, and B. Ray, ‘‘MTFuzz: Fuzzing with
a multi-task neural network,’’ in Proc. 28th ACM Joint Meeting Eur. Softw.
Eng. Conf. Symp. Found. Softw. Eng., Nov. 2020, pp. 737–749.

[20] M. Muench, J. Stijohann, F. Kargl, A. Francillon, and D. Balzarotti,
‘‘What you corrupt is not what you crash: Challenges in fuzzing embedded
devices,’’ in Proc. NDSS, 2018.

[21] Y. Zheng, A. Davanian, H. Yin, C. Song, H. Zhu, and L. Sun, ‘‘FIRM-AFL:
High-throughput greybox fuzzing of IoT firmware via augmented process
emulation,’’ in Proc. 28th USENIX Secur. Symp., 2019, pp. 1099–1114.

[22] P. Srivastava, H. Peng, J. Li, H. Okhravi, H. Shrobe, and M. Payer,
‘‘FirmFuzz: Automated IoT firmware introspection and analysis,’’ in Proc.
2nd Int. ACM Workshop Secur. Privacy Internet-Things, 2019, pp. 15–21.

[23] W. Zhou, L. Guan, P. Liu, and Y. Zhang, ‘‘Automatic firmware emulation
through invalidity-guided knowledge inference,’’ in Proc. 30th USENIX
Secur. Symp., 2021, pp. 2007–2024.

[24] J. Zaddach, L. Bruno, A. Francillon, and D. Balzarotti, ‘‘Avatar:
A framework to support dynamic security analysis of embedded systems’
firmwares,’’ in Proc. Netw. Distrib. Syst. Secur. Symp., 2014, pp. 1–16.

[25] A. A. Clements, E. Gustafson, T. Scharnowski, P. Grosen, D. Fritz,
C. Kruegel, G. Vigna, S. Bagchi, and M. Payer, ‘‘HALucinator: Firmware
re-hosting through abstraction layer emulation,’’ in Proc. 29th USENIX
Secur. Symp., 2020, pp. 1201–1218.

[26] ArduPilot. (2007). Ardupilot Main Community. [Online]. Available:
https://ardupilot.org/

[27] Drone Foundation. (2021). Px4-Open Source Autopilot. [Online]. Avail-
able: https://px4.io/

[28] D. D. Chen, M. Woo, D. Brumley, and M. Egele, ‘‘Towards automated
dynamic analysis for Linux-based embedded firmware,’’ in Proc. NDSS,
vol. 1, 2016, p. 1.

[29] J. Jung, S. Tong, H. Hu, J. Lim, Y. Jin, and T. Kim, ‘‘WINNIE: Fuzzing
windows applications with harness synthesis and fast cloning,’’ in Proc.
Netw. Distrib. Syst. Secur. Symp. (NDSS), 2021.

[30] C. Zhang, X. Lin, Y. Li, Y. Xue, and Y. Liu, ‘‘APICraft: Fuzz driver
generation for closed-source SDK libraries,’’ in Proc. 30th USENIX Secur.
Symp., 2021, pp. 2811–2828.

[31] A. Fioraldi, D. C. D’Elia, and L. Querzoni, ‘‘Fuzzing binaries for memory
safety errors with QASan,’’ in Proc. IEEE Secure Develop. (SecDev),
Sep. 2020, pp. 23–30.

[32] T. Ji, Z. Wang, Z. Tian, B. Fang, Q. Ruan, H. Wang, andW. Shi, ‘‘AFLPro:
Direction sensitive fuzzing,’’ J. Inf. Secur. Appl., vol. 54, Oct. 2020,
Art. no. 102497.

[33] A. Fioraldi, D. C. D’Elia, and E. Coppa, ‘‘WEIZZ: Automatic grey-box
fuzzing for structured binary formats,’’ in Proc. 29th ACM SIGSOFT Int.
Symp. Softw. Test. Anal., Jul. 2020, pp. 1–13.

[34] D. Maier and L. Seidel, ‘‘JMPscare: Introspection for binary-only
fuzzing,’’ in Proc. Workshop Binary Anal. Res., 2021, p. 21.

[35] D. Maier, L. Seidel, and S. Park, ‘‘BaseSAFE: Baseband sanitized fuzzing
through emulation,’’ in Proc. 13th ACM Conf. Secur. Privacy Wireless
Mobile Netw., Jul. 2020, pp. 122–132.

[36] E. Kim, D. Kim, C. Park, I. Yun, and Y. Kim, ‘‘BaseSpec: Comparative
analysis of baseband software and cellular specifications for L3 protocols,’’
in Proc. Netw. Distrib. Syst. Secur. Symp., 2021, pp. 1–18.

[37] Y. Li, S. Ji, C. Lyu, Y. Chen, J. Chen, Q. Gu, C. Wu, and R. Beyah,
‘‘V-Fuzz: Vulnerability prediction-assisted evolutionary fuzzing for binary
programs,’’ IEEE Trans. Cybern., vol. 52, no. 5, pp. 3745–3756,May 2022.

77618 VOLUME 11, 2023



J. Jang et al.: Fuzzability Testing Framework for Incomplete Firmware Binary

[38] Y. Zhang, Z. Wang, W. Yu, and B. Fang, ‘‘Multi-level directed fuzzing
for detecting use-after-free vulnerabilities,’’ in Proc. IEEE 20th Int.
Conf. Trust, Secur. Privacy Comput. Commun. (TrustCom), Oct. 2021,
pp. 47–62.

[39] W. Wang, D. Tian, R. Ma, H. Wei, Q. Ying, X. Jia, and L. Zuo, ‘‘SHFuzz:
A hybrid fuzzing method assisted by static analysis for binary programs,’’
China Commun., vol. 18, no. 8, pp. 1–16, Aug. 2021.

[40] Z. Zhang, W. You, G. Tao, Y. Aafer, X. Liu, and X. Zhang, ‘‘StochFuzz:
Sound and cost-effective fuzzing of stripped binaries by incremental and
stochastic rewriting,’’ in Proc. IEEE Symp. Secur. Privacy (SP), May 2021,
pp. 659–676.

[41] K. Ispoglou, D. Austin, V. Mohan, and M. Payer, ‘‘FuzzGen: Auto-
matic fuzzer generation,’’ in Proc. 29th USENIX Secur. Symp., 2020,
pp. 2271–2287.

[42] W. You, Z. Zhang, Y. Kwon, Y. Aafer, F. Peng, Y. Shi, C. Harmon, and
X. Zhang, ‘‘PMP: Cost-effective forced execution with probabilistic mem-
ory pre-planning,’’ in Proc. IEEE Symp. Secur. Privacy (SP), May 2020,
pp. 1121–1138.

[43] R. Wang, Y. Shoshitaishvili, A. Bianchi, A. Machiry, J. Grosen, P. Grosen,
C. Kruegel, and G. Vigna, ‘‘Ramblr: Making reassembly great again,’’ in
Proc. Netw. Distrib. Syst. Secur. Symp., 2017, pp. 1–15.

[44] P. Srivastava, S. Nagy, M. Hicks, A. Bianchi, and M. Payer, ‘‘One fuzz
doesn’t fit all: Optimizing directed fuzzing via target-tailored program state
restriction,’’ in Proc. 38th Annu. Comput. Secur. Appl. Conf., Dec. 2022,
pp. 388–399.

[45] Y. Kim, S. Hong, and M. Kim, ‘‘Target-driven compositional concolic
testing with function summary refinement for effective bug detection,’’ in
Proc. 27th ACM Joint Meeting Eur. Softw. Eng. Conf. Symp. Found. Softw.
Eng., Aug. 2019, pp. 16–26.

[46] M. Böhme, V.-T. Pham, M.-D. Nguyen, and A. Roychoudhury, ‘‘Directed
greybox fuzzing,’’ in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
Oct. 2017, pp. 2329–2344.

[47] V. Chipounov, V. Georgescu, C. Zamfir, and G. Candea, ‘‘Selective sym-
bolic execution,’’ in Proc. 5th Workshop Hot Topics Syst. Dependability
(HotDep), 2009.

[48] Alan. (Jan. 2023). Framework for Automating Fuzzable Target Discov-
ery With Static Analysis. [Online]. Available: https://github.com/ex0dus-
0x/fuzzable

[49] G. Hernandez, M.Muench, D. Maier, A. Milburn, S. Park, T. Scharnowski,
T. Tucker, P. Traynor, K. Butler, ‘‘FIRMWIRE: Transparent dynamic anal-
ysis for cellular baseband firmware,’’ in Proc. Netw. Distrib. Syst. Secur.
Symp. (NDSS), 2022.

JIWON JANG is a Researcher in future con-
vergence technology engineering with Sungshin
Women’s University, Seoul, South Korea. Her
research interests include system security, fuzzing,
virtual and distributed systems, and penetration
testing.

GYEONGJIN SON is a Researcher in convergence
security engineering with SungshinWomen’s Uni-
versity, Seoul, South Korea. Her research interests
include system security, penetration testing, and
incident response.

HYEONSU LEE is a Researcher in convergence
security engineering with SungshinWomen’s Uni-
versity, Seoul, South Korea. Her research interests
include vulnerability analysis, system security, and
fuzzing.

HEESUN YUN received the B.S. degree in
convergence security engineering from Sung-
shin Women’s University, Seoul, South Korea.
Her research interests include penetration testing,
autonomous vehicle security, cloud security, IoT
security, and blockchain.

DEOKJIN KIM received the Ph.D. degree in information security from the
Korea Advanced Institute of Science and Technology (KAIST), in 2019.
He is a Principal Researcher with The Affiliated Institute of Electronics
and Telecommunications Research Institute (ETRI). He has been conducting
research in computer security for over ten years and has participated in
projects that enhance the security of various systems and services.

SANGWOOK LEE is a Principal Researcher with The Affiliated Institute
of Electronics and Telecommunications Research Institute (ETRI). He is
responsible for leading the drone security research project with the institute.
He has been conducting research in computer security for over ten years
and has contributed to projects that improve system and service security.
He has engaged in research and development planning and research of cyber
security.

SEONGMIN KIM received the B.S. and M.S.
degrees from KAIST, in 2012 and 2014, respec-
tively, and the Ph.D. degree from the Graduate
School of Information Security, KAIST, in 2019.
He is an Assistant Professor with the Depart-
ment of Convergence Security Engineering, Sung-
shin Women’s University. His work has published
in major computer science conferences, includ-
ing USENIX NSDI, NDSS, and ACM WWW.
More details about his research can be found at

https://csesmkim.github.io.

DAEHEE JANG (Member, IEEE) received the
Ph.D. degree in information security from KAIST,
in 2019. He is currently an Assistant Profes-
sor with the Computer Science and Engineer-
ing Department, Kyunghee University. He was a
Postdoctoral Researcher with Georgia Tech until
2020. He has participated in various global hack-
ing competitions, including DEFCON CTF and
has won several awards. In recognition of his
exceptional skills, he received a special prize from

the 2016 KISAAnnual Event for Discovering 0-Day Security Vulnerabilities
in Multiple Software Products. Additionally, he has founded pwnable.kr
wargame, an educational platform aimed at enhancing hacking abilities.

VOLUME 11, 2023 77619


