
Received May 10, 2022, accepted May 29, 2022, date of publication June 8, 2022, date of current version June 15, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3181283

Efficient Generation of Program Execution Hash
EUNYEONG AHN 1, SUNJIN KIM2, SAEROM PARK 1, JONG-UK HOU 3, (Member, IEEE),
AND DAEHEE JANG1
1Convergence Security Engineering, Sungshin Women’s University, Seoul 02844, South Korea
2Future Convergence Technology Engineering, Sungshin Women’s University, Seoul 02844, South Korea
3School of Software, Hallym University, Chuncheon 24252, South Korea

Corresponding author: Daehee Jang (djang@sungshin.ac.kr)

This work was supported by the National Research Foundation of Korea (NRF) funded by the Korean Government (MSIT) under Grant
2021R1F1A1049957.

ABSTRACT Distributed computing systems often require verifiable computing techniques in case their
node is untrusted. To verify a node’s computation result, proof-of-work (PoW) is often utilized as a basis
of verifiable computing method; however, this mechanism is only valid for computations producing results
based on specific algorithm (e.g., AES decryption). To date, there is no efficient PoWmechanism applicable
to arbitrary algorithm or a computation that does not produce any tangible output (e.g., void function). This
paper proposes execution hash to serve as a proof for a program’s idempotent computation result without
relying on its algorithm. Two versions of execution hash generationmethods were designed and implemented
and the efficacy was evaluated in terms of performance and reliability. Implementation was based on
LLVM/Clang 6.0 and evaluation was based on open-source software, including GNU binutils/coreutils and
Google’s OSSFuzz projects.

INDEX TERMS Binary, execution hash, proof of work, program trace, verifiable computing.

I. INTRODUCTION
With the recent implementation of cloud computing in var-
ious fields, outsourcing specific tasks to third parties have
become prevalent, which has bolstered the importance of
verifiable computing [1]–[4]. Verifiable computing generally
refers to the process where one client outsourcing tasks, such
as computation, to multiple untrusted entities. Each entity
participating in the computation must verify its conduct by
returning the results with proof that it executed the work
correctly. However, issues that may arise include dishon-
est workers, not actually performing the computations, and
returning plausible results [1]. Therefore, researchers have
conducted various studies on enabling clients to verify, with
little effort, if the work was correctly performed [5].

However, previous cases of verifiable computing primarily
outsourced computations that have a clear input-output rela-
tionship, such as mathematical or cryptographic operations
[6], [7]. This study proposes execution hash as amethodology
that enables the client to verify the execution flow of all
programs intuitively, including computations where a result
does not exist (e.g., void function), or where the input-output
relationship is unclear. Specifically, when offloading certain

The associate editor coordinating the review of this manuscript and

approving it for publication was Huiyan Zhang .

tasks to untrusted clients, the execution hash value can be
used as a proof whether the computation was actually exe-
cuted as intended.

The execution hash is a hash value generated from tracing
the program’s runtime execution flow; if the execution flow
changes, then the hash value also changes.1 There are much
information related to a program execution. The execution
hash can be derived from such information and one way to
generate such hash is observing changes in execution flow at
basic-block granularity; and by investigating changes in the
frequency of calls to edges between basic blocks.

In the first method, the binary is instrumented using
LLVM [8] and a hash value is generated when the binary
is terminated. This hash value is result of the call records
of all basic blocks executed from the beginning of the pro-
gram to its termination; if the execution of even one basic
block is omitted or added, or the order changes, then the
hash value changes. In the second method, the binary also
generates hash value but in a different way compared to the
first method: a fixed size array2 of the edges connecting the
basic blocks is created, then the frequency of calls using

1The hash as we guarantee is not a hash of the code’s contents but a hash
of runtime execution history.

2In LLVM, this is referred as inline counter array.

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 61707

https://orcid.org/0000-0002-0280-4606
https://orcid.org/0000-0002-2687-7105
https://orcid.org/0000-0002-7101-0244
https://orcid.org/0000-0003-3406-8954

E. Ahn et al.: Efficient Generation of Program Execution Hash

these edges are stored in the array, and the hash value of
the array is calculated. Therefore, although the hash value
will differ if the execution of even one basic block changes,
the execution order of the basic blocks does not have to be
considered. Thus, even if a program is identically executed
at high-level semantics, these methodologies can be used to
track changes in internal memory values or differences in the
detailed execution flow.

This study proposes EXHGen(Execution Hash generator):
a tool for efficient generation of program execution hash
that can observe the program’s execution flow and inves-
tigate subtle changes in single-threaded executions. As the
execution hash is a trustworthy logical indicator, it can be
applied to verifiable computing to save time and cost, and
resolve the problem of dishonest participants. The execution
hash method can easily observe the program execution flow
and is applicable to numerous situations other than verifi-
able computing, such as deterministic execution and detailed
debugging.

This study conducted an additional test that applied the
execution hash to deterministic execution. Traditionally,
deterministic execution is a field that generally investi-
gates methods to effectively debug multi-threaded appli-
cations (e.g., Dthreads [9]). However, thread scheduling
is not necessarily the only factor that causes a program
to execute non-deterministically. For example, even single-
threaded programs can have different execution flows with
the same inputs and conditions depending on the heap mem-
ory status, results of Libc functions, state of the network
or file system, external interrupts, and system call-handling
results. As a more specific example, if the heap memory allo-
cation function (e.g., malloc) fails due to insufficient memory
resources, the value 0 is returned, for which, an exception
handling code can be considered. This is a correctness issue
in the field of program testing. Although there may be no
difference in the result at a level where the difference in
detailed flow is very high, if the detailed computation flow
is important (e.g., fuzzing [10]–[13]), then the existence of a
difference becomes significant. This study applied the execu-
tion hash to investigate how frequently non-deterministic exe-
cutions appear in a single thread for 108 programs included in
the binutils [14] and coreutils [15] packages as well as 32 pro-
grams of OSS-Fuzz. A hooking library that can deterministi-
cally change for cases with non-deterministic execution was
applied and attributed to the API function and system call
execution result. Through these tests, the two methodologies
that implement execution hash using existing methodologies
were compared; the distinctiveness and efficiency of execu-
tion hash were demonstrated.

II. BACK GROUND & THREAT MODEL
A. BASIC BLOCK
Block is a bundle of assembly words that run at once when
executing a program. Among them, basic block refers to a
linear code sequence that branches only at the beginning and
end. The branch at the beginning is the entry point of the block

that comes in to execute the basic block at another block, and
the branch at the end is the part that goes out to execute the
code at another block after the execution of the basic block.
Due to this limited form, branch instructions cannot exist in
the middle of the code constituting the basic block, and all
instructions are always executed only once in order. For this
reason, tracking the execution flow of basic blocks makes it
very easy to analyze the flow of instructions during program
execution; it also helps to track records of certain exceptional
situations, such as when errors occur. EXHGen_version1,
developed in this study, uses a method of storing records
of executed basic blocks in memory by inserting additional
codes into each basic block and tracking the entire basic
block execution record. Since the execution records of basic
blocks can eventually be considered the execution flow of the
program, a comparison can be made between these records
and non-deterministic cases can be observed.

B. COVERAGE MAP
Coverage refers to the measurement of the execution flow of
the program. It is mainly used to check how much program
code has been executed for a program. When executing a
program, the execution record of a basic block is generally
expressed as code coverage, a concept used in gcov [16]
in general software engineering and AFL coverage [17] in
fuzzing. EXHGen_version2, developed in this study, mea-
sures the execution flow of the program based on this cov-
erage map. There can be various types of coverage maps, and
in the case of EXHGen_version2, the frequency of calls to
edges between basic blocks is measured through the LLVM’s
inline counter array.

C. EINTR
EINTR [18] is an interrupt signal that occurs when a system
call is interrupted. Interrupt can be divided into hardware
interrupts, generated by hardware, and software interrupts,
caused by exceptions that occurred while the system call was
running. EINTR is an error signal that occurs in a software
interrupt related to a system call. It indicates that the process
was interrupted by a specific signal before the function could
complete the normal operation in the system call process.
In this study, a non-deterministic case was observed in which
the basic block execution record of a single thread changed
due to exceptions to function call results (EINTR signal
generation) during system call and external library functions;
additional experiments were conducted to solve this with
hooking.

D. DBI
In computer programming, instrumentation refers to func-
tions for diagnosing errors or monitoring the performance of
programs, such as data logging, debugging, and performance
tracking. Alternatively, it can also refer to the act of inserting
an analysis code into the binary. Analysis code refers to
a set of code inserted by the user to observe a program’s
behavior without changing its original semantic. Dynamic

61708 VOLUME 10, 2022

E. Ahn et al.: Efficient Generation of Program Execution Hash

binary instrumentation (DBI) is a type of instrumentation
that happens at run time instead of compilation time. Intel
PIN (free software) is one of the standard framework that
supports DBI implementation [19], [20]. When executing a
binary using a PIN, the codes are translated into intermediate
representation and then transformed with instrumentation.
That is, the binary is not directly loaded and executed, but
is executed on top of PIN engine. DBI implementation using
Intel PIN is convenient as PIN provides rich APIs. However,
DBI takes huge transformation overhead, thus, significantly
slowing down target binary execution.

E. LIBFUZZER
Libfuzzer is an in-process, coverage-guided, and evolutionary
fuzzer developed by Google as part of the LLVM project
[21]. It uses evolutionary algorithms to expand coverage effi-
ciently and in-process methods to improve fuzzing’s ability.
Evolutionary fuzzer uses genetic algorithms to generate ran-
dom mutations from sample corpus, and mutations generated
every round are used as new corpus sets. The input that
increases code coverage in the generated corpus set is stored
and used as a sample corpus later. Therefore, in general,
there is a higher probability that evolutionary fuzzing may be
more successful than when randomly generated input is used.
Libfuzzer refers to performing fuzzing in units of functions
of the library, not executing the entire program independently
for fuzzing. Additional work is required because part of the
program subject to fuzzing needs to be wrapped, but the
overall performance has nevertheless improved dramatically,
including speed. In this study, libfuzzer was used; however,
it was modified and added to a part of the compiler to create
version2, an efficient tool to measure the execution flow of
the program.

F. PoW
RoT (Root of Trust) [22] is always reliable software or hard-
ware, where all the security work of a computing system
depends. Ultimately, it is TC (Trusted Computing) that is
intended to achieve, and there are representative platform
modules or execution environments such as TPM and TEE.
A trusted execution environment (TEE) and trusted platform
module (TPM) can provide hardware-based functions related
to security to prove program integrity, thus enabling verifiable
computing. TEE is a secure execution environment provided
by the security area within the main processor. Since it exe-
cutes in parallel with the operating system in an isolated
environment, the confidentiality and integrity of code and
data loaded into the TEE are protected. Hardware techniques
that can be used to implement TEE include ARM’s Trust-
Zone [23] and Intel’s SGX [24]; however, this study utilized
proof-of-work (PoW) as the method to implement verifiable
computing. In contrast to TEE and TPM, which implement
hardware-based security, PoW [25], [26] is a consensus algo-
rithm in which nodes endlessly repeat the process of finding
a hash below a target value and prove that they participated
in this work. PoW aims to prove that a node performed a

certain task or computation. Additionally, it also deters data
manipulation, and ensures that distributed computing can be
securely implemented.

G. THREAT MODEL
The threat model in our paper is participating clients disrupt-
ing the distributed (outsourced) computation; intentionally
or un-intentionally. These threats are caused by a program’s
non-deterministic behavior and thus can be mitigated by
enforcing the determinism. There are a number of previ-
ous researches considering non-determinism as a threat [27],
[28]. In this paper we leverage hash-based Proof-of-Work
(PoW) concept to achieve trustworthy verification of com-
putation, thus guaranteeing the honesty of distributed com-
puting workers.

III. DESIGN
A. EXECUTION HASH
In verifiable computing, each entity executes a program and
then verifies whether the program was correctly executed
mainly based on the execution result. However, there may be
programs whose output execution result cannot be checked.
Even under normal circumstances, users who execute pro-
grams are forced to rely solely on the output for information
about the program’s execution, which makes it challenging
for them to obtain information about programs that are diffi-
cult to check using the output data. Even for programs whose
execution result provides an output, the user cannot obtain
information about the program’s execution flow for a specific
input without a debugging process. This means that even if
an identical result is the output when the same input is passed
to the program, the user cannot determine whether the same
functions were called or the same flow was executed without
additional work on their part. If a distributed computing
system must verify aforementioned computations, the veri-
fication becomes challenging. To address such challenges,
this study proposes an execution hash. An execution hash
intuitively provides information on the program’s execution
flow without additional debugging work. The most accurate
methodology for generating execution hashes is to generate
a hash by tracking the full execution flow of the program.
However, given the excessively high cost, tracking and hash-
ing all information is highly inefficient. As a solution, this
study proposes generating the hash by extracting only the
most essential information about the program execution.

There are two ways to generate the hash: the first is a
fine-grained method that traces the entire calling order of the
basic blocks, and the second is a slightly more coarse-grained
method that involves hashing the code coverage information.
To describe the execution hash overall, after inserting specific
code into the program, information indicating the execution
flow is collected and the hash is calculated based on the
coverage for the collected program execution flow. Any pro-
gram using these methods can easily generate an execution
hash, and the hash value can be used to check whether the

VOLUME 10, 2022 61709

E. Ahn et al.: Efficient Generation of Program Execution Hash

FIGURE 1. Hashing program’s execution flow effectively catches subtle difference in program’s behavior.

FIGURE 2. Internal design of EXHGen. Left and right side of the figure depicts version1 and version2 respectively.

program’s execution flow has changed as shown in Fig. 1.
Along with PoW-based verifiable computing, this function
of the execution hash is applicable to diverse situations,
such as detailed debugging work when problems arise in a
deterministic program. It serves as a logical basis in verifi-
able computing and can be used to identify the problem if
something goes wrong, for instance, when executing a deter-
ministic program that must produce identical output for the
same input. The execution hash can be used when debugging
components, such as heap memory. The internal structure of
heap memory greatly varies even with subtle differences in
program execution, thus frequently leading to different results
even from identical executions. Thus, the execution hash can

be used to provide logical and reliable information about the
program to all users, and it can be applied in certain situations
to solve problems.

B. EXHGen_VERSION1
Fig. 2_version1 shows the overall design of version1. When
building the test target program with the clang tool of ver-
sion1, a unique number is assigned to a basic block in the
target program’s binary, and additional code is inserted at the
same time. Afterward, when a block of a specific number
is executed, the execution flow is recorded in order by the
inserted code, and immediately before the program is termi-
nated, the accumulated execution flow is calculated as the

61710 VOLUME 10, 2022

E. Ahn et al.: Efficient Generation of Program Execution Hash

execution hash value through the CRC (Cyclic Redundancy
Check) algorithm. The basic block’s execution record mea-
sured in version1 is typically expressed as code coverage.
In version1, the code coverage is not tracked as an aggregated
result, such as a hash map (e.g., conventional AFL code
coverage) or counter data structure used in libfuzzer [21].
For precise observation, all execution records considering
the order of the entire basic block visit record are observed,
and the result is finally hashed. Thus, although it demands
extensive load in terms of performance, version1 can reliably
track subtly different execution flows that existing coverage
measurement tools might miss. One may think that if all basic
block execution flows are tracked, then memory usage will
excessively increase if the program execution flow continues
indefinitely, thus depleting memory. However, this can be
solved with a trade-off of speed-memory usage. Whenever
a new basic block is executed, rather than accumulating the
record inmemory, the existing hash is only updated internally.
Hence, version1 has O(1) space complexity.

C. EXHGen_VERSION2
Fig. 2_version2 shows the overall design of version2. Build
the test target program using the clang tool of version 2 in
the same way as version 1. Unlike version1 however, the
execution flow of each basic block is not recorded in order,
and only information on the execution frequency of edges
between the basic blocks is recorded in the form of an array.
As the total number of edges in the program is fixed, the
array always has a constant size. As in version1, the array in
which the execution flow information is stored calculated as
the execution hash value using the SHA1 algorithm. Given
that version2 does not consider the execution flow order,
the hash value remains identical even if the execution order
of edges in the program changes, unlike version1. As a
result, although the observation is not precise like version1,
the time to measure the execution hash is always constant
(e.g., O(1) time complexity) even if the execution flow
becomes indefinitely long, as the array size and the length of
the data itself are fixed. To conclude, this study proposes two
tools with different application targets: for version1, a simple
program that requires precise measurement, and for version2,
a complex program that requires greater consideration of
performance and time.

IV. APPLICATION
A. VERIFIABLE COMPUTING AND DEBUGGING
This section proposes two applications for this research: ver-
ifiable computing and debugging.

Suppose, a client outsources the computation of some
functions to some untrusted clients. The clients that were
assigned the work provide a result with proof that the work
was correctly performed; hence, the client that outsourced the
work should be able to judge the accuracy of the returned
result. The proposed methodology can be applied in this
case to prove that certain results were correctly computed

in cases of verifiable computing that do not use TEE and
TPM under the premise of PoW. For example, we propose the
SETI@home project as an applicable scenario. SETI@home
is a project that utilizes large-scale distributed computing
technology to explore radio signals from space. It is a project
to search for radio signals of extraterrestrial civilization by
analyzing signals in the frequency band of planets that are
likely to have intelligent life; using large-scale distributed
computing technology. The master node outsources the radio
signal analysis job to each node participating in the project
and gathers the result. Each node participating in the job
must use correct algorithm given by master — this must be
verified if the participating nodes are untrusted. In general,
distributed computing utilize TEE or TPM as root of trust
to ensure code integrity. However, hardware support is not
available to all systems, and additionally, untampered code do
not always guarantee high level sementic of data processing
that can subtly change due to runtime/external events such as
interrupts. Although a system do not support hardware based
root of trust, EXHGen can achieve same objective with high
accuracy. For example, when the master node outsources the
signal to analyze, EXHGen can effectively detect if the node
is performing the job as-is without any tampering (intention-
ally or unintentionally) by comparing the excution hash value
of other nodes. We can also apply EXHGen in a similar way
to other distributed computing projects that require additional
verification.

The second application is debugging. In the program
development stage, debugging is conducted to find logi-
cal errors or bugs in the code, reveal the cause, and solve
the problem. When debugging with repeated executions,
if the results vary due to changes in the execution flow,
then it may be impossible to debug the program effectively.
Accordingly, researchers have continuously investigated
techniques to make multi-threaded programs with frequent
non-deterministic errors deterministic to debug them accu-
rately. However, even the single-threaded programs (integrity
protected via RoT) in this study produce non-deterministic
errors due to asynchronous interrupts; and their frequency
increases as the program grows in complexity. Therefore, the
tool can be used to check whether the program’s execution
flow has changed, and changes according to system calls and
various external factors can bemodified through the proposed
solution of function hooking. Through this, a program can
be fixed to show the same execution flow when repeatedly
executed, allowing the debugger to locate critical errors or
bugs.

The proposed tool thus provides verifiable and reliable
information in distributed computing environments and has
various applications, such as creating an accurate debugging
environment in the development stage.

B. NON-DETERMINISM
To describe the overall study design, first, EXHGen was
applied to build binutils and coreutils programs, the study tar-
gets, and each of these built binaries was repeatedly executed

VOLUME 10, 2022 61711

E. Ahn et al.: Efficient Generation of Program Execution Hash

by applying a variety of execution options. Cases where
the execution hash value changed during repeated execution
were recorded, which were then statically and dynamically
analyzed to confirm whether the difference was due to a non-
deterministic execution flow. If the change was caused by
an exceptional operation, such as an API/system call, it was
modified through hooking to show a deterministic execution
result. For this work, an additional test code and hooking code
were written. For the test code, the test target program was
repeatedly executed, and cases where hash values cause non-
deterministic errors were automatically detected and man-
aged. For the hooking code, libc APIs were appropriately
modified based on the cause analysis, and non-deterministic
execution was made deterministic. Non-deterministic exe-
cution covered in this study refers to cases where a single
thread’s basic block execution record varies with the heap
state, system calls, and exceptional circumstances when call-
ing external library functions.

V. IMPLEMENTATION
A. EXHGen_VERSION1
Fig. 2_version1 is implemented by adding a pass to the
LLVM 6.0 as a sanitizer interface (-fsanitize=). In other
words, a version of clang was created that adds a san-
itizer, which performs the instrumentation desired, and
a compiler option was added to that clang to build the
source code of the target program with the additional code.
We added LLVM pass code to following call back func-
tion: runOnBasicBlock. runOnBasicBlock is a call
back function invoked by LLVM while parsing each basic
block. In runOnBasicBlock, the pass brings the last
location of the basic block using the getTerminator
function to specify where to insert the instrumented code. The
instrumented code simply invokes the custom function (ver-
sion1_Trace) to trace the execution flow. In version1_Trace
function, the unique basic block was identified based
on return address (__builtin_return_address).
__builtin_return_address is a special clang built-
in function to get the return address of currently executing
function. Since this address contains a code location inside
the target basic block, this number can be used as a unique
ID of the block. In this way, entire sequence of basic block
IDs can be gathered and each time the ID is obtained, the
internal CRC state can be updated. As a result, the final
CRC state at the end of program execution contains the
overall program execution flow. Version1 installs an exit
handler (atExit) to print out the final CRC hash when the
program is terminated. File interface is used to print out this
information; therefore, when executing a test program built
with version1, the working directory must be in a writable
state.

B. EXHGen_VERSION2
Fig. 2_version2 is a program execution flow measurement
tool created by modifying a part of the libfuzzer in the clang

compiler and inserting additional code. The functions of ver-
sion2 are implemented by inserting additional codes written
in C++, and the most important code is the part where the
execution hash is obtained. Libfuzzer executes the program
to be implemented by dividing it into compartments referred
to as module. Based on this, version2 measures the program
execution hash of each module. The module consists of a
basic block, which allows the program execution flow to be
measured in units of modules. For this, version2 introduces
an inline counter, which records the frequency of execution
of the edge. Since the module consists of basic blocks, several
basic blocks connected by the edge are executed when the
module is called. In this case, the edge represents a jump
between the basic blocks, which means that the information
on the edge flow may be regarded as information on the exe-
cution frequency of the basic block. To obtain information on
the final flow of the program, inline counter information for
each module must be recorded. Accordingly, version2 inserts
an array of up to eight bits to store an inline counter into
each of the modules constituting the program. As the number
of modules in the program and the number of basic blocks
constituting the module do not change, the size of each inline
counter array is also fixed. In this study, the inline counter
array inserted into the module is regarded as the coverage
of each module and hashed using the SHA1 algorithm. The
operation is started for all modules constituting the program
using a function of determining the start position and the
end position of the module. The hash of each module is
XOR-calculated to each other, and a hash chain is formed
through this process. After the operation for all hashes is
complete, the finally generated hash is dumped into the file.
As a result, the hash finally dumped indicates an operation
result in which information of all modules constituting the
program is associated. This means that a very slight change
in the flow of execution can bring a big change to the hash;
hence, version2 can be used from various perspectives.

VI. EVALUATION
The tests were carried out in the following environment:

1) Ubuntu Linux 16.04 and 18.04 systems with 16 core
CPU, 16 GB RAM, and 1TB SSD

2) 192 coreutils commands and corresponding options,
102 binutils commands and corresponding options,
and 32 OSS-Fuzz programs

A. NON DETERMINISM TEST
Non-determinism tests were repeatedly performed on the
selected commands and programs to examine whether the
result varied due to any other secondary factor under a single-
threaded situation. This was done to demonstrate the mean-
ingfulness of finding non-deterministic execution flows in
single-threaded commands and programs, which this study
investigated, rather than multi-threaded ones, as in many pre-
vious studies. Each binutils/coreutils command was repeat-
edly executed 100,000 or 1 million times depending on

61712 VOLUME 10, 2022

E. Ahn et al.: Efficient Generation of Program Execution Hash

TABLE 1. Number of execution hash deviation in OSS-Fuzz evaluation.
We iterated same execution and counted deviated hash as error.

performance to find non-deterministic cases. To catch non-
deterministic case, a python script compares execution hashes
gathered from multiple executions. EXHGen_version1 was
applied with the assumption that the hash value obtained by
the first execution was the correct value. Command execution
was automated, and the hash values for the program execu-
tion flow accumulated in the file for each execution were
compared. When the values differed, it was judged as a non-
deterministic error. In Table 3, Err indicates the number of
non-deterministic errors in the two commands.While most of
the commands exhibited a deterministic program execution
flow, the -O option of the strip-new command in binutils
showed relatively many errors (15). This is because, unlike
other commands, intermittent function calls related to system
calls were omitted due to repeated execution.

The same algorithm was used in OSS-Fuzz; the number
of iterations was manually based on the test target program’s
execution speed; 32 programs were tested about 1 million
times each. Since EXHGen_version2 was used, every time
a program was executed, a file containing the hash value
generated according to the number of basic block executions
was generated. The md5 hash values for these files were
obtained to check whether the execution flow changed; if
the hash values were different, then it was judged as a non-
deterministic error. Table 1 shows the error frequency in each
program. The results in Table 1 and Table 3 indicate that
the error rate rises with the program’s complexity due to
the variety of variables in repeated execution. Most of the
32 samples showed a significant error rate, while only six did
not show any error.

B. PERFORMANCE TEST
Since additional code was added in EXHGen_version1 to
calculate the hash value for the program execution flow, it was
predicted that the execution time would slow down as more
codes were physically executed like Table 2. To examine
how much the execution time slowed and how much the
time performance differed with the existing executable file
analyzer, the time performance was measured with repeated
executions of binutils/coreutils commands Table 3. Due to

page limitation, Table 3 summarizes subset of our data set.
Full data is available in Table 4, Table 5, and Table 6. As binu-
tils/coreutils considers even the order to calculate the hash
for the execution history, it is meaningful to compare the
time between the method using EXHGen_version1 and the
method not using it. However, for EXHGen_version2 used in
OSS-Fuzz, since the hash is calculated only once regardless
of the program’s execution time, the hash calculation time
was not additionally analyzed. In Table 3, the number of
iterations was fixed for all cases to 100,000 and measured
the difference in the time performance of each command and
option depending on whether EXHGen_version1 was applied
in binutils/coreutils.

According to evaluation, in almost all cases, execution took
longer when using EXHGen_version1, though the difference
was not large. version1 can also be implemented using a DBI
tool, such as Intel pin tool; therefore, we additionally imple-
mented EXHGen based on Intel pin’s trace feature (denoted
as D.T in the table) and the performance (consumed time
memory) was accordingly compared. Compared to C.T, D.T
clearly showed a significant overhead. In terms of time taken
to measure the execution flow, using EXHGen_version1 was
1% to 10% slower than not using any tool at all, whereas
using Intel pin tool was nearly 10 times slower. This indicates
that EXHGen can measure a program’s execution flow more
quickly and efficiently.

C. NON-DETERMINISM FIX
Given that non-deterministic errors were found even in
single-threaded operations in the above non-determinism test,
a non-determinism fix test was performed to demonstrate that
it is meaningful to resolve the error and make the execution
flow deterministic. For binutils/coreutils commands, where
errors were found by comparing the execution hash values,
ltrace and strace were run to find the cause of the
error. This was done by inserting ltrace/strace code into the
above code that was repeatedly executed. From the results,
the causes were classified into four categories:

• error inevitably occurred during repetition because the
operation was a one-time command

• error occurred because the disk and memory conditions
changed in real time

• a problem with the code used in the test
• a specific reason could not be identified

Particularly, it was difficult to measure the determinism of
the execution flow accurately when an error occurred due to
the OS used for the test, computer specification or environ-
ment, disk environment, among others. As such, of these four
categories, an additional test was performed on commands for
which the cause of error was unknown.

The test was conducted on cases of the -O option of
the strip-new command in binutils, which revealed the
15 errors as shown in Table 3. Unknown errors arose for this
command with a probability of about 0.001%. The execu-
tion was repeated approximately 450,000 times for a more

VOLUME 10, 2022 61713

E. Ahn et al.: Efficient Generation of Program Execution Hash

TABLE 2. Size comparison of code by size command. O.S stands for original code size without hash generation, C.S stands for changed code size with
EXHGen.

FIGURE 3. Normal execution case. fread retrieves total 100 bytes in a single trial.

detailed observation, in which case the same hash value error
occurred six times and the probability slightly rose to approx-
imately 0.0012%. According to the normal execution flows
shown in Fig. 3 and the execution flows where error occurred
shown in Fig. 4 using ltrace, although most showed the
same results, it was observed that when a non-deterministic
situation occurred, the fread function call was intermittently
omitted due to a system call error. Consequently, it was not
possible to read the full data from the file as expressed in
No. 5 of Fig. 4; therefore, fread function hooking code (myf-
read.c) was written to fix the execution flow deterministically,
which set the reason for non-determinism.

The point of this hooking code Algorithm 1 is to fix
the execution flow so that when reading a file using the
fread function, the contents corresponding to the size passed
as an argument are read accurately for every execution

without exception. This code was composed in a for-
mat similar to the existing fread function and inserted
the code original_fread = dlsym(RTLD_NEXT,
“fread”) to declare the original fread function as orig-
inal_fread. Code was then written to check whether the
returned value (total_count) when passing the same param-
eters to the original_fread function and calling it was iden-
tical to the count parameter value passed when calling
the fread function. If the values were different, then the
code proceeded through Nos. 6–10 shown in Fig. 4, deter-
mined that the function returned while reading the file, and
read the address after the interrupted address again with
the original_fread function. This was implemented with
the code original_fread((void*)((unsigned
int)ptr + total_count*size), size, count -
total_count, stream). Thus, it was modified so that

61714 VOLUME 10, 2022

E. Ahn et al.: Efficient Generation of Program Execution Hash

FIGURE 4. Abnormal execution case. fread retrieves total 100 bytes in two trials 10 and 90 respectively.

the hooking library could handle the exception-handling
logic that could continuously read the contents of the file
until count and total_count were equal. When count and
total_count were equal, total_count was returned and the
function was terminated.

The completed code myfread.c was compiled as a
shared library using the command gcc -Wall -fPIC
-shared -o myfread.so myfread.c -ldl, after
which the command LD_PRELOAD=./myfread.so./
strip-new -O binary test was executed so that
when strip-new was executed, the myfread.so shared library
could be loaded and the hooked fread function called. Finally,
ltrace was used to check whether the hooked fread func-
tion was properly called; an error rate of 0% was observed
when the test was repeated 1,000,000 times. In conclusion,
the desired deterministic program execution flow result was
successfully derived.

Algorithm 1: patched Libc Fread Function.
Data: PTR, size
Result: the final value of total_size
total_size = 0;
original_fread→ dlsym(‘‘fread’’);
remaining_size = size;
while total_size != size do

current_size = original_fread(PTR +
total_size, remaining_size);
total_size + = current_size;
remaining_size − = current_count;

return total_size;

VII. RELATED WORK
A. PROGRAM TRACE
Tools for tracing programs [29]–[31] often find detailed
elements, such as program history (e.g., function calls),
thread operation methods, and various event types in the
program execution stage. Since the execution hash can deter-
mine whether the execution flow changed when tracing
the program, it can effectively measure performance to
judge whether the program was executed deterministically.
SROH [29] calculates the traced hashes for values stored in
memory corresponding to the random read and write access
of the program as proposed in OH [30], thus automatically
detecting non-deterministic program areas and protecting
integrity. The greatest difference in the current study is that
the determinism of the program itself can be confirmed
because the entire basic block call history is collected to
create a table of the call frequency, from which the hash is
calculated.

B. VERIFIABLE COMPUTING
As the execution hash in this study is designed to verify
whether a program is executed correctly, it can be used
for verifiable computing. Many prior studies on verifiable
computing dealt with situations where the input-output rela-
tionship is clear, such as in cryptographic operations. [32]
presented a method that defends against threats, such as
dishonesty from untrusted clients and enables them to prove
that they accurately performed most of the work with a high
probability. In this process, although the act of confirming
whether a specific operation result was returned is similar

VOLUME 10, 2022 61715

E. Ahn et al.: Efficient Generation of Program Execution Hash

TABLE 3. Evaluation result using binutils/coreutils. The numbers are measured based on 100K iterative executions. Opt is the parameter given to the
application. ∗ indicates that application executes without parameter. Err is count of execution hash deviation. O.T stands for original execution time
without hash generation, C.T stands for changed execution time with EXHGen and D.T stands for execution time with DBI based hash generation.

to the current study, a difference is that it uses mathematical
operations.

Furthermore, although [33]–[35] have similar objectives
to this study, their approaches to solutions slightly differ
in terms of mathematical and cryptographic operations. The
current study applied verifiable computing to trace the exe-
cution flow of programs and demonstrated that the proposed
methods can verify operations and identify whether com-
putations were properly executed. Methods that can imple-
ment verifiable computing include PoW, TEE, and TPM.
[25], [36]–[39] investigated ways to ensure the integrity of

work and programs by utilizing these methods. PoW-based
verifiable computing, the application target of this study, was
covered in [25], which investigated efficient statistical tech-
niques using PoW for cloud and fog computing and proposed
a method that provides secure and transparent transactions by
verifying data blocks while solving PoW’s limitations of high
resource consumption and long working time. To improve
computing security, [36]–[39] used hardware-based methods
applying TEE and TPM, which ensure program integrity. The
studies referenced in [36] aimed to provide a secure and reli-
able distributed computing environment, same as our study.

61716 VOLUME 10, 2022

E. Ahn et al.: Efficient Generation of Program Execution Hash

TABLE 4. Full data set of binutils&coreutils evaluation.

VOLUME 10, 2022 61717

E. Ahn et al.: Efficient Generation of Program Execution Hash

TABLE 5. Full data set of coreutils evaluation.

However, a difference is that they used the support of TPM
for credentials. TEE has been recently applied to distributed
computing, such as blockchain (e.g., [39]), making it possible
to verify mathematically whether computing was correctly
performed while maintaining security.

C. DEBUGGING
A characteristic of this research subject is that it only
shows cases that become non-deterministic due to some
other secondary factors in a single-threaded situation. As in
[40]–[43], almost all attempts tomake programs deterministic

61718 VOLUME 10, 2022

E. Ahn et al.: Efficient Generation of Program Execution Hash

TABLE 6. Full data set of coreutils evaluation.

for effective debugging were on multi-threaded programs.
A study [44] mentions multi-threaded execution as a major
research subject, although there is similarity in that it deals
with deterministic execution. Prior research adopted the solu-
tion of serializing the parallel execution flow, whereas this
study differs in that it fixes changes caused by system calls
or external factors to the program.

VIII. CONCLUSION
This study developed an execution hash generation tool using
LLVM, verified the performance and occurrence of non-
deterministic executions for binutils, coreutils, and OSS-Fuzz
program sets, and discussed its feasibility as a PoW mech-
anism based on the findings. According to the test results,
approximately 81 non-deterministic errors were observed
among approximately 20 million executions using the tool
for binutils and coreutils programs, and about 166 non-
deterministic errors among approximately one billion exe-
cutions for OSS-Fuzz programs. Certain cases were also
selected among these non-deterministic errors to analyze and
identify their causes. The developed tool is expected to be
applicable to verifiable computing as well.

REFERENCES
[1] R. Gennaro, C. Gentry, and B. Parno, ‘‘Non-interactive verifiable com-

puting: Outsourcing computation to untrusted workers,’’ in Advances in
Cryptology. Berlin, Germany: Springer, 2010, pp. 465–482.

[2] S. Chen, J. H. Cheon, D. Kim, and D. Park. (2019). Verifiable Comput-
ing for Approximate Computation. Cryptology ePrint Archive. [Online].
Available: https://eprint.iacr.org/2019/762

[3] Z. Ghodsi, T. Gu, and S. Garg, ‘‘SafetyNets: Verifiable execution of
deep neural networks on an untrusted cloud,’’ in Advances in Neural
Information Processing Systems, vol. 30. Red Hook, NY, USA: Curran
Associates, 2017. [Online]. Available: https://proceedings.neurips.
cc/paper/2017/file/6048ff4e8cb07aa60b6777b6f7384d52-Paper.pdf

[4] X. Chen, ‘‘Introduction to secure outsourcing computation,’’ Synth. Lec-
tures Inf. Secur., Privacy, Trust, vol. 8, no. 2, pp. 1–93, Feb. 2016.

[5] X. Yu, Z. Yan, and A. V. Vasilakos, ‘‘A survey of verifiable computa-
tion,’’ Mobile Netw. Appl., vol. 22, no. 3, pp. 438–453, May 2017, doi:
10.1007/s11036-017-0872-3.

[6] D. Fiore, R. Gennaro, and V. Pastro, ‘‘Efficiently verifiable computation on
encrypted data,’’ in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
Nov. 2014, pp. 844–855.

[7] X. Yu, Z. Yan, and R. Zhang, ‘‘Verifiable outsourced computation over
encrypted data,’’ Inf. Sci., vol. 479, pp. 372–385, Apr. 2019.

[8] C. Lattner. (2008). LLVM and Clang: Next Generation Compiler
Technology LLVM: Low Level Virtual Machine. Accessed:
Jun. 31, 2021. [Online]. Available: https://reup.dmcs.pl/wiki/im
ages/0/09/53_BSDCan2008ChrisLattnerBSDCompiler.pdf

[9] T. Liu, C. Curtsinger, and E. D. Berger, ‘‘Dthreads: Efficient deterministic
multithreading,’’ in Proc. 23rd ACM Symp. Operating Syst. Princ. (SOSP),
2011, pp. 327–336.

[10] M. Xu, S. Kashyap, H. Zhao, and T. Kim, ‘‘Krace: Data race fuzzing for
kernel file systems,’’ in Proc. IEEE Symp. Secur. Privacy (SP), May 2020,
pp. 1643–1660, doi: 10.1109/SP40000.2020.00078.

[11] C. Lemieux and K. Sen, ‘‘FairFuzz: A targeted mutation strategy for
increasing greybox fuzz testing coverage,’’ in Proc. 33rd ACM/IEEE Int.
Conf. Automated Softw. Eng., Sep. 2018, pp. 475–485.

[12] S. Gan, C. Zhang, X. Qin, X. Tu, K. Li, Z. Pei, and Z. Chen, ‘‘Col-
lAFL: Path sensitive fuzzing,’’ in Proc. IEEE Symp. Secur. Privacy (SP),
May 2018, pp. 679–696.

[13] R. Shakya, J. Gibson, and J. Brackins, ‘‘Fuzzing to identify
undiscovered bugs in scientific software,’’ Proc. Student Res.
Creative Inquiry Day, vol. 4, no. 1, May 2020. [Online]. Available:
https://publish.tntech.edu/index.php/PSRCI/article/view/679

[14] GNU Org. Binutils—GNU Project—Free Software Foundation. Accessed:
Jun. 2, 2021. [Online]. Available: https://www.gnu.org/software/binutils/

[15] GNU Org. Coreutils—GNU Core Utilities. Accessed: Jun. 2, 2021.
[Online]. Available: https://www.gnu.org/software/coreutils/

[16] G. License, ‘‘Gcov: Gnu coverage tool,’’ Tech. Rep. [Online]. Available:
http://gcc.gnu.org/onlinedocs/gcc-3.0/gcc_8.html

[17] A. Fioraldi, D. Maier, H. Eißfeldt, and M. Heuse, ‘‘AFL++: Combining
incremental steps of fuzzing research,’’ in Proc. 14th USENIX Workshop
Offensive Technol. (WOOT), 2020.

[18] J. C. Mogul and K. K. Ramakrishnan, ‘‘Eliminating receive livelock in
an interrupt-driven kernel,’’ ACM Trans. Comput. Syst., vol. 15, no. 3,
pp. 217–252, Aug. 1997.

[19] V. J. Reddi, A. Settle, D. A. Connors, and R. S. Cohn, ‘‘PIN: A binary
instrumentation tool for computer architecture research and education,’’
in Proc. Workshop Comput. Archit. Educ. Held Conjunct 31st Int. Symp.
Comput. Archit. (WCAE), 2004, p. 22.

[20] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace,
V. J. Reddi, and K. Hazelwood, ‘‘Pin: Building customized program anal-
ysis tools with dynamic instrumentation,’’ in Proc. ACM SIGPLAN Conf.
Program. Lang. Design Implement. (PLDI), 2005, pp. 190–200.

[21] K. Serebryany, ‘‘Libfuzzer—A library for coverage-guided fuzz testing,’’
LLVM Project, Tech. Rep., 2015.

[22] V. Gligor and M. Woo, ‘‘Requirements for root of trust establish-
ment,’’ in Security Protocols. Cham, Switzerland: Springer, 2018,
pp. 192–202.

[23] W. Li, Y. Xia, and H. Chen, ‘‘Research on ARM TrustZone,’’ GetMobile,
Mobile Comput. Commun., vol. 22, no. 3, pp. 17–22, Jan. 2019.

[24] V. Costan and S. Devadas. (2016). Intel SGX Explained. ePrint IACR.
[Online]. Available: https://eprint.iacr.org/2016/086

VOLUME 10, 2022 61719

http://dx.doi.org/10.1007/s11036-017-0872-3
http://dx.doi.org/10.1109/SP40000.2020.00078

E. Ahn et al.: Efficient Generation of Program Execution Hash

[25] G. Kumar, R. Saha, M. Rai, R. Thomas, and T. H. Kim, ‘‘Proof-of-work
consensus approach in blockchain technology for cloud and fog comput-
ing using maximization-factorization statistics,’’ IEEE Internet Things J.,
vol. 6, no. 4, pp. 6835–6842, Aug. 2019.

[26] A. Gervais, G. O. Karame, K. Wüst, V. Glykantzis, H. Ritzdorf, and
S. Capkun, ‘‘On the security and performance of proof of work
blockchains,’’ in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
Oct. 2016, pp. 3–16.

[27] D. Firesmith. The Challenges of Testing in a Non-Deterministic
World. SEI Blog. Accessed: May 1, 2022. [Online]. Available:
https://insights.sei.cmu.edu/blog/the-challenges-of-testing-in-a-non-
deterministic-world/

[28] S. Mathews. (Feb. 23, 2021). How to Avoid the Headache With Non-
deterministic Bugs in Software. Accessed: May 1, 2022. [Online].
Available: https://levelup.gitconnected.com/how-to-avoid-the-headache-
with-non-deterministic-bugs-in-software-e24457f05c9b

[29] M.Ahmadvand, A. Hayrapetyan, S. Banescu, andA. Pretschner, ‘‘Practical
integrity protection with oblivious hashing,’’ in Proc. 34th Annu. Comput.
Secur. Appl. Conf., Dec. 2018, pp. 40–52.

[30] Y. Chen, R. Venkatesan, M. Cary, R. Pang, S. Sinha, and
M. H. Jakubowski, ‘‘Oblivious hashing: A stealthy software integrity
verification primitive,’’ in Information Hiding. Berlin, Germany: Springer,
2003, pp. 400–414.

[31] CS-TR-06-1: Program Trace Formats for Software Visu-
alisation. Accessed: Jun. 30, 2021. [Online]. Available:
http://www.mcs.vuw.ac.nz/comp/Publications/CS-TR-06-1.abs.html

[32] P. Golle and I.Mironov, ‘‘Uncheatable distributed computations,’’ inTopics
in Cryptology. Berlin, Germany: Springer, 2001, pp. 425–440.

[33] W. Du, J. Jia, M. Mangal, and M. Murugesan, ‘‘Uncheatable grid comput-
ing,’’ in Proc. 24th Int. Conf. Distrib. Comput. Syst., 2004, pp. 4–11.

[34] P. Golle and S. Stubblebine, ‘‘Secure distributed computing in a commer-
cial environment,’’ in Financial Cryptography. Berlin, Germany: Springer,
2002, pp. 289–304.

[35] T. W. Lockhart, ‘‘The design of a verifiable operating system kernel,’’
Tech. Rep., Univ. Brit. Columbia, Endowment Lands, BC, Canada, 1979.

[36] M. Sabt, M. Achemlal, and A. Bouabdallah, ‘‘Trusted execution envi-
ronment: What it is, and what it is not,’’ in Proc. IEEE Trust-
com/BigDataSE/ISPA, Aug. 2015, pp. 57–64.

[37] Z. Shen and X. Wu, ‘‘The protection for private keys in distributed com-
puting system enabled by trusted computing platform,’’ in Proc. Int. Conf.
Comput. Design Appl., Jun. 2010, p. 576.

[38] M. Achemlal, S. Gharout, and C. Gaber, ‘‘Trusted platform module as an
enabler for security in cloud computing,’’ in Proc. Conf. Netw. Inf. Syst.
Secur., May 2011, pp. 1–6.

[39] L. P. Maddali, M. S. D. Thakur, R. Vigneswaran, M. A. Rajan,
S. Kanchanapalli, and B. Das, ‘‘VeriBlock: A novel blockchain framework
based on verifiable computing and trusted execution environment,’’ in
Proc. Int. Conf. Commun. Syst. Netw. (COMSNETS), Jan. 2020, pp. 1–6.

[40] J. Trümper, J. Bohnet, and J. Döllner, ‘‘Understanding complex multi-
threaded software systems by using trace visualization,’’ in Proc. 5th Int.
Symp. Softw. Visualizat. (SOFTVIS), 2010, pp. 133–142.

[41] S. Taheri, I. Briggs, M. Burtscher, and G. Gopalakrishnan, ‘‘Diff-
Trace: Efficient whole-program trace analysis and diffing for debug-
ging,’’ in Proc. IEEE Int. Conf. Cluster Comput. (CLUSTER), Sep. 2019,
pp. 1–12.

[42] J. Burnim and K. Sen, ‘‘Asserting and checking determinism for multi-
threaded programs,’’ inProc. 7th JointMeeting Eur. Softw. Eng. Conf. ACM
SIGSOFT Symp. Found. Softw. Eng. Eur. Softw. Eng. Conf. Found. Softw.
Eng. Symp. (ESEC/FSE), 2009, pp. 3–12.

[43] H. Chen, S. Guo, Y. Xue, Y. Sui, C. Zhang, Y. Li, H. Wang, and
Y. Liu, ‘‘MUZZ: Thread-aware grey-box fuzzing for effective bug hunting
in multithreaded programs,’’ in Proc. 29th USENIX Secur. Symp. (USENIX
Security), 2020, pp. 2325–2342.

[44] C. Zamfir and G. Candea, ‘‘Execution synthesis: A technique for auto-
mated software debugging,’’ in Proc. 5th Eur. Conf. Comput. Syst.
(EuroSys), 2010, pp. 321–334.

EUNYEONG AHN is currently a Researcher in
convergence security engineering with Sungshin
Women’s University, Seoul, South Korea. Her
research interests include system security, fuzzing,
compiler/LLVM, hacking, and autonomous car
security.

SUNJIN KIM received the B.S. degree in con-
vergence security engineering from Sungshin
Women’s University, South Korea, in 2021, where
she is currently pursuing the M.S. degree in future
convergence technology engineering. Her research
interests include system security, computer vision,
and attacking machine learning with adversarial
attack.

SAEROM PARK received the B.S. and Ph.D.
degrees in industrial engineering from Seoul
National University, in 2013 and 2018, respec-
tively. She is currently an Assistant Professor with
the Department of Convergence Security Engi-
neering, Sungshin Women’s University, Seoul,
South Korea. Her research interests include secure
and stable machine learning, stability analysis,
robust training from an adversary, and privacy-
preserving machine learning through encryption.

JONG-UK HOU (Member, IEEE) received the
B.S. degree in information and computer engineer-
ing from Ajou University, South Korea, in 2012,
and the M.S. and Ph.D. degrees from KAIST,
South Korea, in 2014, and 2018, respectively.
He has been anAssistant Professor with the School
of Software, Hallym University, since 2019, and
the Principal Investigator of the Multimedia Com-
puting Laboratory. His research interests include
various aspects of information hiding, point cloud

processing, computer vision, machine learning, and multimedia signal
processing.

DAEHEE JANG received the Ph.D. degree in infor-
mation security from KAIST, in 2019. He is cur-
rently an Assistant Professor with the Security
Engineering Department, SungshinWomen’s Uni-
versity. He worked as a Postdoctoral Researcher
at Georgia Tech, until 2020. He participated
in various global hacking competitions (such
as DEFCON CTF) and won several awards.
He received a special prize from 2016 KISA
annual event for finding zero day security vulner-

abilities in many software products. He is also the Founder of pwnable.kr
wargame—an education platform for training hacking skills.

61720 VOLUME 10, 2022

