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Abstract—External hardware-based kernel integrity monitors have been proposed to mitigate kernel-level malwares. However, the
existing external approaches have been limited to monitoring the static regions of kernel while the latest rootkits manipulate the
dynamic kernel objects. To address the issue, we present KI-Mon, a hardware-based platform that introduces event-triggered
monitoring techniques for kernel dynamic objects. KI-Mon advances the bus traffic snooping technique to not only detect memory write
traffic on the host bus but also filter out all but meaningful traffic to generate events. We show how kernel invariant verification software
can be developed around these events, and also provide a set of APIs for additional invariant verification development. We also report
our findings and considerations on the unique challenges for external monitors — such as cache coherency, dynamic object tracing. We
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introduce host-side kernel changes that alleviate these issues that involve changes in kernel’s object allocation and cache policy
control. We have built a prototype of KI-Mon on the ARM architecture to demonstrate the efficacy of KI-Mon’s event-triggered
mechanism in terms of performance overhead for the monitored host system and the processor usage of the KI-Mon processor.

Index Terms—Kernel security, rootkit detection, kernel integrity monitors, hardware-based kernel monitoring

1 INTRODUCTION

KERNEL rootkits are a special class of malware that com-
promise an OS kernel. Since they place themselves in
the highest privilege layer within the system, any in-system
detection system becomes practically ineffective. Many
researchers have made active efforts to address rootkit
attacks by providing a safe execution environment where
kernel integrity monitors operate. Such efforts can be
categorized into two types of approaches: Virtual Machine
Monitor (VMM) based [1], [2], [3], [4], [5], and hardware-
based [6], [7], [8], [9].

However, the VMMs are also a piece of software and are
no exception to software attacks that target vulnerabil-
ities [10], [11], [12], [13]. Moreover, It has shown that subvert-
ing the VMMs from the guest OS kernel is quite possible [14].
For this reason, External hardware-based approaches [6], [7]
proposes the use of an external hardware as a possible alter-
native root of trust to the VMMs.

One of the earlier external hardware-based monitors,
Copilot [6] presented a periodic snapshot-based kernel
integrity monitor implemented as a PCI device. Vigilare
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introduced an event-triggered monitoring architecture that
employs a bus traffic snooper [7], to overcome transient
attacks that may exploit the time window inbetween snap-
shots. However, these works are limited to monitoring a
static kernel code and data for modifications. Unfortunately,
modern kernel rootkits evade such rudimentary monitoring
schemes by manipulating kernel dynamic objects. Hence, the
ability to verify dynamic objects is imperative to a modern
kernel integrity monitor. However, monitoring the dynamic
kernel objects from external has been largely unexplored.
We propose an external hardware-based Kernel Integrity
Monitoring platform, called KI-Mon. To explore possibilities
of monitoring mutable kernel objects with an event-
triggered mechanism, KI-Mon presents architectural foun-
dations of hardware-assisted event-triggered detection and
verification mechanism. KI-Mon is capable of generating an
event which reports the address and value pair of memory
modification, occurred on the monitored object. Event gen-
eration is refined with a support for whitelist-based filtering
to eliminate unnecessary software involvement in value
verification. KI-Mon also allows an event-triggered callback
verification routine to be programmed and executed for a
designated event space with the KI-Mon API. In addition,
we developed the KI-Mon API to ensure the programmabil-
ity of the platform, which supports development of moni-
toring rules. Example monitoring rules were developed and
tested against attacks from real-world rootkits to confirm
the effectiveness of the platform. On the host side, we intro-
duce minimal yet effective optimizations on the host kernel
that greatly simplifies the complexities of external monitor-
ing. Our evaluation shows the efficacy of event-triggered
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monitoring in terms of the performance overhead to the
monitored system using benchmarking tools. The KI-Mon
prototype is built with the ARM Cortex A9 processor to
explore the applicability of the proposed approach for com-
modity processor architectures.

2 CHALLENGES IN EXTERNAL MONITORING

As introduced in the previous section, KI-Mon is designed
to be capable of monitoring dynamic mutable objects. While
it provides building blocks for writing kernel data invariant
verifiers, there remain formidable challenges that affect all
external monitoring techniques. We faced rather peculiar
challenges that are unique to KI-Mon. In this section, we
outline the unique challenges that we came across in the
process of architecting the external security monitor. Then,
our design decisions and solutions will be presented in
Section 4.

2.1 Verifying Dynamic Contents

The contents of mutable objects in dynamic regions, or
dynamic data structures, are frequently modified by the
operating system kernel. Such a characteristic introduces
complexities in monitoring the mutable kernel objects. Since
the modifications made to the mutable objects could be
legitimate changes, resulting from the normal operations of
a kernel, simply detecting the occurrence of modification to
these structures does not provide decisive evidence in
determining whether the modifications are malicious or
benign. In addition, there are cases in which verifying the
update value against a known good value is not sufficient
for integrity verification. Consider the example of a linked
list manipulation attack, where the adversary removes an
entry from a linked list to hide the entry. Inspecting the
linked list will reveal that the entry has been removed.
However, from this observation alone, we cannot determine
if the entry was removed by an adversary or legitimately
removed by the kernel. In these cases, additional semantic
verification to check the consistent modification of other
related kernel data structures is required to confirm the
legitimacy of these changes.

2.2 Locating Objects for Monitoring

Unlike the static kernel region (i.e., code data section) the
dynamic objects that we seek to monitor are allocated dur-
ing runtime at an unpredictable address, and even become
deallocated unpredictably. This means that it is required for
KI-Mon to perform tracing of the target monitored objects
to be able to identify and monitor the objects. Tracing of
dynamic objects is a non-trivial task; while the task can be
achieved by iterating the pointer chains of objects, or alter-
natively by examining the bookkeeping data structures
used by kernel’s allocator. Unfortunately this would inevi-
tably introduce complexities to the design of KI-Mon'’s soft-
ware. Moreover, iterating over kernel memory involves
using a number of memory snapshots via KI-Mon’s DMA
module. Carefully studying the issue and possible solu-
tions, we came to a conclusion that a minimal and non-
intrusive modification to the host kernel mitigate the issue
in a straightforward yet efficient way. This solution is fur-
ther explained in Section 4 and Section 5.3.

2.3 Cache Coherency Issue

The Cache Coherency issue may hinder the monitoring
capability of KI-Mon in limited cases. Under a write-back
cache policy,the memory operations made by software is not
directly applied to the memory but only on the in-processor
caches. It is when the data is evicted from the cache, the
memory addresses that correspond to the data are updated.
KI-Mon or any other external monitors do not have visibil-
ity into the processor cache [6], [7]. Hence, the in-memory
contents that are inspected may be stale values whose
updates were only applied to their counterparts in the
cache. Such discrepancy between the cached value and its
counterpart in DRAM may cause a false-negative.

We further explored the issue, and we found rare cases
where a malicious data modification may be probabilisti-
cally detected with our bus snooping. When data is over-
written then restored to its original value immediately after,
the intermediate value may not be visible to bus snooping.
While most of the attacks that subvert the control flow of
kernel can not be done effectively this way due to the lack
of persistence. However, we found that our sample rootkits
that perform linked list entry hiding exhibit such transient
characteristic. These rootkits are loaded as a form of Loadable
Kernel Module (LKM), and remove their module entry from
the global loaded modules list immediately upon loading.
From the example, we learned that there are cases where
the presence of a write-back cache policy needs to be taken
into account. We explain our mitigation to the issue. Also,
the attack and our monitoring rule implementation for the
attack is detailed in Section 5.4.

3 KI-MoN PLATFORM DESIGN

KI-Mon is an external hardware-based Kernel Integrity
Monitor that adapts an event-triggered mechanism to
enable monitoring of dynamic-content data structures. To
achieve the desired functionality, we designed and imple-
mented a prototype of a platform that includes both hard-
ware and software components. The design objectives for
KI-Mon are summarized as the following;:

O1. Safe Execution Environment. The most fundamental
requirement for any kernel integrity monitor is a safe execu-
tion environment. That is, a kernel integrity monitor should
be designed to be resilient to any type of interference from
the compromised monitored system.

O2. Event-Triggered Monitoring. For an external monitor
to trace mutable kernel objects, it should be able to identify
any modification as an event that is comprised of an address
and value pair. As previously mentioned, the update value
is essential for verification of the legitimacy of the modifica-
tion. In addition, there needs to be a mechanism that allows
a semantic verification routine to be executed when the
value of an event alone cannot serve as proof that the modi-
fication is malicious. Furthermore, KI-Mon deviates from
periodic state capturing techniques such as memory snap-
shots, implementing a hardware platform that focuses on
events, rather than states. We further define the desiderata
for an event-triggered monitoring mechanism as below, in
02.1 to O2.4.

02.1 Refined event generation: For an external monitor to

trace mutable kernel objects, it should be able to
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identify any modification as an event, comprised of
an address and a value pair. Furthermore, a refined
event can be generated from raw events by suppress-
ing commonly occurring benign updates at the
snooping hardware module, so that the verifier can
be engaged only when it is necessary.

Event-triggered semantic verification: As previously
mentioned, the value is essential for verification of
the legitimacy of the modification. In addition, there
needs to be a mechanism that allows a semantic veri-
fication routine to be executed when the value of an
event alone cannot serve as a proof that the modifica-
tion is malicious. The routine should reference other
related kernel objects in order to verify the semantic
consistency.

Minimal overhead on monitored system: KI-Mon devi-
ates from periodic state capturing techniques such as
memory snapshotsapp, implementing a hardware
platform that focuses on events, rather than states.
An event-triggered mechanism should also mini-
mize performance overhead inflicted on the moni-
tored system during its operation.

Efficient monitoring processor usage: An event-
triggered scheme is expected to minimize the work-
load, imposed on the monitoring processor. This
minimization can be beneficial when the amount of
monitored data is larger and the hardware cost of
the monitoring processor needs to be limited.

O3. Programmability. The operating systems maintain a
large number of various dynamic data structures during
run-time, and the format and usage of these data structures
vary across different operating systems. Moreover, kernel
updates to the operating systems often change the behavior
of kernel operations that are related to the data structures or
the format of the data structures. For this reason, KI-Mon
needs to be highly programmable, in order to guarantee a
certain degree of portability across different operating sys-
tem versions and to support development of new monitoring
algorithms. The details of the KI-Mon design that address the
above design objectives will be explained in the rest of this
section. Design objective OI is achieved using KI-Mon’'s
hardware platform by design. We developed KI-Mon API to
provide programmability to KI-Mon. This programmability
satisties design objective O3. Design objective O2.1 is
addressed by KI-Mon’s HAW mechanism; O2.2 is achieved
by the Event-triggered Semantic Verification mechanism. 02.3
and O2.4 will be further evaluated in Section 6.

022

02.3

024

3.1 Safe Execution Environment

The KI-Mon hardware platform is a complete microproces-
sor-based system. While KI-Mon operates independently
from the monitored host system, it is capable of monitoring
host memory modifications with a bus traffic monitoring
module called Value Table Management Unit (VIMU) and a
Direct Memory Access (DMA) Module for the monitored sys-
tem. The in-depth capabilities of VIMU and the use of
DMA will be further discussed in the rest of this section, but
it should be noted that their operations do not involve the
monitored system’s processor, nor any other components
on the monitored system. This is made possible by the
shared bus architecture, which enables KI-Mon to inspect
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Fig. 1. KI-Mon Monitoring Mechanism.

the monitored system. On the other hand, the monitored
system has no physical connection to KI-Mon through
which it could interact with. In fact, the monitored system is
not aware of the existence of KI-Mon. Hence, KI-Mon
ensures that its monitoring activities are safe even when the
monitored host system is compromised by a rootkit. In this
way, KI-Mon achieves its first design objective O1: Safe Exe-
cution Environment.

3.2 Event-Triggered Monitoring

KI-Mon incorporates its hardware and software platform.
The hardware platform generates events when modifica-
tions occur in the monitored regions. The software platform
verifies events as shown in Fig. 1. The explanation of this
mechanism will start from the capturing of host bus traffic
in the hardware platform. It will then explore how these
captured instances of traffic are passed up to the software
platform for the further verification.

3.2.1 Refined Event Generation

VTMU is the core component that monitors the host mem-
ory bus traffic to generate events. Its operation can be
divided into three stages: bus traffic snooping, address fil-
tering, and value filtering. The bus of the monitored system
is fed into VIMU, and VIMU extracts only write signals
from the stream of the host’s memory I/O traffic. As the col-
lected write signals pass through the address filter, all sig-
nals except the ones corresponding to the monitored region
are discarded. Finally, the signals are once again filtered in
the comparator units. The signals are compared against the
preloaded values in the whitelist registers. The signals with
the address and value pair, that survived the two-stage fil-
tering, are reported to the software platform, running on
the KI-Mon processor. We call this mechanism hardware-
assisted whitelisting (HAW); the reports, sent to the software
platform, are called HAW-Events.

Also, it should be noted that the VTMU is a highly con-
figurable hardware component, and our software platform
can readily adjust the monitored regions and the whitelisted
values. For instance, the whitelist registers can be config-
ured to be inactive, so that all write signals to the monitored
regions generate HAW-Events.
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3.2.2 KI-Veri and MonitoringRules

Kernel Integrity Verifier (KI-Veri) is the main component in the
software platform, enabling the event-triggered monitoring
mechanism. It interfaces with MonitoringRules, which are
high-level objects implemented on top of the KI-Mon APL
Each MonitoringRule defines the target regions to be moni-
tored by VIMU, and such regions are called critical regions.
VIMU generates HAW-Events when the contents of these
regions are modified. For this reason, the regions should be
chosen prudently so that a modification of the regions will
serve as an effective trigger to the monitoring mechanism.
Critical regions and their whitelists are stored in VIMU upon
the registration of MonitoringRules. A MonitoringRule is also
required to have predetermined actions such as an HAW-
Event Handler and an Integrity Verifier, to be executed when
HAW-Events occur in the critical regions. These actions are
fetched and executed by KI-Veri. HAW-Event Handlers ver-
ify HAW-Events in order to invoke other actions, such as
Integrity Verifiers, as needed.

3.2.3 Detection Methodology of MonitoringRule
Templates

The main focus of the current implementation of KI-Mon is
to propose an event-triggered monitoring scheme for muta-
ble kernel objects. Rootkit attacks on mutable kernel objects
can be classified into two categories: control flow components
and data components [1]. Control-flow components are usu-
ally function pointers that store the addresses of kernel
functions. Since such control flow components are refer-
enced to execute the functions located at the addresses, root-
kits often place hooks on such components to inject their
routine into the control flow.

Many data components or non-control-flow components,
store critical pieces of information that reflect the current
state of the kernel. Critical data components such as lists of
processes, kernel modules, and network connections lists
can be subverted by rootkits so that the traces of rootkits are
hidden. KI-Mon deploys two types of MonitoringRule tem-
plates in its prototype for monitoring of control flow and
data components: Hardware-Assisted Whitelisting (HAW)-
based Verification for control flow components and Callback-
based Semantic Verification for data components.

Hardware-Assisted Whitelisting (HAW)-Based Verification.
As we discussed in the previous section, update value veri-
fication can serve as an indication of malicious manipula-
tions in some cases; semantic verification is otherwise
imperative. Recall that a semantic verification references
other semantically related kernel objects to find semantic
inconsistencies. We observe that value verification is partic-
ularly effective against attacks on control flow components.
All control flow components should point to the functions
in the kernel code section, or functions in the known kernel
drivers loaded via loadable kernel modules. More specifi-
cally, many control flow components in kernel dynamic
data structures always point to one possible landing site.
We define such property as the value set invariant of a ker-
nel object. We take advantage of this property in modeling
the monitoring scheme for control flow components. HAW-
based Verification is a MonitoringRule, where the address
of the control flow component is set as a critical region and

its possible landing sites as a whitelist in VIMU. HAW-
events, generated from this type of MonitoringRule, are
simply considered malicious.

Callback-based Semantic Verification: Callback-based Se-
mantic Verification is a type of MonitoringRule, which is
designed to serve as a template for monitoring kernel data
components. The monitoring scheme for control flow com-
ponents is not suitable for monitoring of modifications on
data components that require semantic verification because
the processes of identifying memory modifications and their
values are inadequate for detecting manipulation attacks on
semantic information. The HAW-Event handler can invoke
the Integrity Verifier for further inspection, which involves
acquisition of semantically related data structures. This
type of Integrity checking is called the enforcement of
semantic invariants [15]. Note that the HAW-Event handler
can be programmed to call functions other than Integrity
Verifiers. This feature can be used to update the information
on the monitored data structure. For example, detection of a
newly inserted entry in a linked list can be programmed
and invoked by the HAW-Event handler.

3.3 KiI-Mon API for Programmability

As previously mentioned, the MonitoringRules that operate
in KI-Mon are built with the KI-Mon API. The KI-Mon API,
includes high-level software stacks and low-level drivers
for the hardware platform, to enable convenient and rapid
development of kernel integrity monitoring rules. KI-Mon
API is developed so that writing new MonitoringRules,
based on our detection methodology, become convenient. It
is even possible to create entirely new algorithms. Thus,
KI-Mon API corresponds to our third design objective: O3:
Programmability. A more detailed explanation of the inter-
nals of the API will be given in the following section.

4 DEDICATED MONITORED ZONE IN HOST KERNEL

As a mitigation to the inherent difficulties of external moni-
toring in general, we introduce host-side optimization that
simplifies the complexities of external monitoring. More
specifically, we apply a minimal change in the kernel mem-
ory management subsystem of the monitored host. The
changes we make are non-intrusive and architecture inde-
pendent. In fact, we reused the existing infrastructure in the
kernel memory management subsystem that are originally
intended to support DMA for peripheral devices. In addi-
tion, considering that a set of custom kernel patches are usu-
ally required for accommodating hardware specifics of a
newly developed System-on-Chip (SoC), these changes are
by no means complications in terms of the practicality of
the design. We explain the general concept and benefits of
the dedicated monitored zone, and we further explain its
inner workings in Section 5.3.

4.1 Congregating Monitored Objects

Congregating the monitored objects in a designated moni-
tored zone brings two clear advantages to the KI-Mon plat-
form. First, we eliminate the need for complicated object
allocation/deallocation tracing by forcing kernel to allocate
the designated monitored objects in a dedicated monitored
area called ZONE_KIMON. This way, all monitored objects
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Fig. 2. ZONE_KIMON is dedicated memory space in kernel that is being
actively monitored by Kl-Mon. Monitored Objects can be placed in
ZONE_KIMON by calling allocation functions with GFP_KIMON flag.
Write-through holes that can be monitored without cache effects can
also be requested with GFP_KIMON_WT flag.

are congregated as they are allocated. Hence, KI-Mon can be
oblivious of allocation/deallocation, and detect any changes
occur within ZONE_KIMON then refer to the slab meta data
placed in the beginning of the page to find out the data
type. This eliminates the need for constantly tracking slab-
related kernel structures for locating objects that need to be
monitored.

Second, congregation of the targets of monitoring signifi-
cantly simplifies the KI-Mon hardware design and also
reduces the production cost of the hardware. In order to mini-
mize the number of cycles consumed by each event process-
ing on the KI-Mon platform, we chose to use the address
range registers on the snooper instead of a memory space. By
congregating the monitored objects, we can merge adjacent
monitored regions into one continuous region, allowing KI-
Mon to monitor more objects with fewer number of registers.
This is a clear advantage that can be taken from the congrega-
tion of the monitored object, since addition of a large number
of registers on hardware is impractical in terms of cost.

We take advantage of the concept of zones in the Linux
memory management subsystem to create this monitored
zone. The Linux kernel memory is divided into zones to
meet specific allocation requirements. For instance, the ker-
nel reserves the first 16 MB as ZONE_DMA on the x86 arhic-
tecture due to the limit in addressable memory space in the
ISA bus architecture. We reuse the concept and implementa-
tion of zoned allocation built into the kernel’s memory man-
agement subsystem to create ZONE_KIMON.

The selection of the zone to which the object is allocated
is determined by an allocation flag called GFP flag, that is
passed through kernel’s allocator functions such as kmal-
loc. We introduce a flag called GFP_KIMON, in addition to
the existing ones such as GFP_NORMAL and GFP_DMA.
Hence, by changing the GFP flag of the callsites that invoke
allocator functions to allocate the objects that we intend to
monitor, we are able to force the objects into ZONE_KIMON.

This design allows reorganization of the kernel objects
that are to be monitored in a non-intrusive way. From the
viewpoint of a developer who is utilizing the KI-Mon plat-
form, the only difference is addition of a new GFP flag type.
Most kernel objects are allocated with the GFP_NORMAL.
One can place an object in ZONE_KIMON by simply flipping
the flag to GFP_KIMON. Regardless of the changes under-
neath, our kernel modifications leave the use of the kernel
memory allocation APIs remains untouched with the excep-
tion of the new GFP flag.

As we will discuss in more detail, all linux kernel objects
are essentially hosted by slab caches; that is, all objects are a
member of certain cache depending on their type. A slab
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Fig. 3. KI-Mon Hardware Platform. (Gray box shows bus architecture).

cache may span a single page or more. It should be noted
that placed at the beginning of the first page of a cache, is a
metadata structure that describe the cache. This enables
KI-Mon to identify the contents of slab caches in ZONE_
KIMON and apply a corresponding MonitoringRule.

4.2 Write-Through Holes

As explained in Section 2, we acknowledge that a cache-
coherent (i.e., write-through or no-caching policy) bus
snooping may prove to be essential in detecting certain
types of rootkit attacks. To address the issue, we create a
dedicated write-through cache policy zone Within ZONE_
KIMON. With a write-through cache policy, each modifica-
tions made to the region is reflected on both processor cache
and physical memory, hence observable by KI-Mon’s
VIMU. For allocating objects into this particular area, we
offer GFP_KIMON_COHERENT GFP flag.

A cache-coherent memory may suffer from increased
access time compared to that of a write-back cached mem-
ory. While a few number of write-through pages on a sys-
tem do not incur a significant performance overhead, it is
still a trade-off between performance and security in our
design. For this reason, we congregate all objects that need
to be monitored in a cache-coherent memory in a limited
write-through hole created in ZONE_KIMON.

5 PROTOTYPE IMPLEMENTATION

5.1 KI-Mon Hardware Platform Prototype

The KI-Mon platform and the monitored host system are
implemented as an SoC on a Xilinx Zyng-7000 prototyping
system. The host processor is the Cortex-A9 MP processor
[16] and the KI-Mon processor is the Microblaze [17] proces-
sor running at 50 MHZ. Fig. 3 illustrates the overall struc-
ture of our SoC implementation. The KI-Mon platform and
the host system are connected to an AXI-compatible shared
bus, enabling the VIMU and DMA module to acquire bus
traffic events and memory snapshots [18].

VTMU is a core component of the KI-Mon hardware plat-
form that generates HAW-events by snooping the host bus
traffic for modifications. VIMU filters the collected on-bus
packets based on the addresses and the values being written
to extract meaningful write traffic then notify the KI-Mon
processor. The VIMU registers are configurable even dur-
ing runtime via the driver we implemented.

The schematic of VTMU’s internal structure is illustrated
in Fig. 4. The operation of VIMU consists of three stages:
bus traffic snooping, address filtering, and value filtering.
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The first stage of VITMU operations, bus traffic snooping, is
implemented based on a shared bus architecture that con-
forms to the AMBA 3 AXI protocol. Modules attached to the
AMBA 3 AXL protocol bus are categorized into masters and
slaves. Masters are active modules that access slave mod-
ules as needed, whereas slaves are passive modules that
respond to the requests of masters.

Along with VIMU, the hardware platform includes a
DMA module and a hash accelerator to support snapshot-
related features. The DMA module takes snapshots of the
monitored system’s memory and stores them in KI-Mon’s
private memory. The DMA module has two master and one
slave interface. One of the two master interfaces is con-
nected to the ARM Accelerator Coherency Port (ACP) [19]
of the monitored system, and the other to KI-Mon bus.

Our design takes advantage of the ARM ACP to achieve
cache-coherent DMA snapshots. By connecing the master
interface of the DMA module directly to the ARM ACP of
the monitored prcessor, the snapshot takings performed by
the module consults the host processor cache.

5.2 KI-Mon Software Prototype

Upon the occurrence of an event, KI-Veri searches the
VIMU registers to find the MonitoringRule instance for
which the registers are reserved. Then, KI-Veri executes the
HAW-event handler of the MonitoringRule instance to ver-
ify which action needs to be invoked for the HAW-event.

As shown in Fig. 5, KI-Veri retrieves the pointer to the
MonitoringRule that is responsible for the HAW-event. The
HAW-event handler of this MonitoringRule determines the
action that needs to be taken for the given addr and value
pair. The pair contains the address, where the modification
has occurred and the value of the modification.

The class MonitoringRule is implemented as an object-
oriented C structure. It is designed to serve as a template for
writing a kernel integrity monitoring rule on KI-Mon’s
event-triggered mechanism. The class includes critical
regions, corresponding whitelists, an initializer function,
and the action functions. Fig. 6 is a pseudo code definition
of the class MonitoringRule.

The CriticalRegion data structure defines the starting and
ending address of the monitored region as well as the

onHawEventFromVTMU (addr, value)
{
monitoringRule = getMonitoringRuleFor (addr);
requiredAction = \
monitoringRule->HawEventHandler (addr,value) ;
if (requiredAction == INSPECTION_NEEDED)
{
monitoringRule->inspectIntegrity (argArray);
}
else if (requiredAction == RAISE_ALERT)
{
monitoringRule->traceDataStructures (argArray
)i
}
else
{
//Other requiredAction can be here
}
}

Fig. 5. KI-Veri’s Main Routine

whitelist for the region. The initMonitoringRule can contain
initialization procedures such as acquiring of the addresses
of the monitored data structures, which addresses will be
stored in the criticalRegion variable. The onHawEvent defines
the action to be taken upon the arrival of HAW-events from
the hardware layer. If the MonitoringRule was of a HAW-
based Verification template-all write attempts to the moni-
tored regions are considered malicious if they are not in the
whitelist-the function can simply declare that an attack was
detected. For the MonitoringRules, which were written for a
Callback-based Semantic Verification template, onHawEvent
can call inspectIntegrity passing arguments as needed. Then,
the inspectlntegrity function verifies the modification
reported via HAW-event with memory snapshots collected
from the monitored system. Similarly, traceDataStructures
can be called if onHawEvent sees that the HAW-event gen-
erated signifies change in the location or size of the moni-
tored structure.

The functions and macros defined in the data structure
layer can be used as building blocks for implementing the
action functions in MonitoringRules. The Data Structure
Acquisition Engine is the actual implementation of the layer.
Memory snapshots extracted from the monitored system’s
memory are raw memory contents. Since KI-Mon or any
other external hardware monitor does not have OS-
managed metadata of the monitored data structures, addi-
tional parsing and constructing of a meaningful data struc-
ture out of the raw data is essential.

The Raw Data Layer consists of the low-level hardware
drivers that provide core functionalities for the upper
layers. The VTMU Driver manages the memory value verifi-
cation units, which count up to 16 in our current implemen-
tation. Each unit consists of 6 registers: the first two
registers store the starting and ending addresses of the
interval to be monitored. The rest of the registers store the

typedef struct MonitoringRule

{
CriticalRegion criticalRegion;
void initMonitoringRule () ;

int (xonHawEvent) (addr,value);

int (xinspectIntegrity) (argArray);

int (*traceDataStructures) ();
}MonitoringRule;

Fig. 6. Class MonitoringRule
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TABLE 1
Sizes of Common Kernel Objects

obj Name obj size # objs total obj mem
task_struct 2688 bytes 693 1848 kb
vim_area_struct 184 bytes 18722 3404 kb
mm_struct 896 bytes 224 224 kb
dentry 192 bytes 515046 98104 kb
kmem_cache 192 bytes 168 32 kb

whitelisted values referenced by the comparators. It should
be noted that the VIMU driver only engages in the configu-
ration of the hardware. That means, the memory bus traffic
monitoring can be effortlessly done in the hardware layer
thus it is not necessary for the driver to be running during
the monitoring. VIMU notifies the software stack of an
event when a write event to the monitored regions is
detected. The DMA Driver makes DMA requests to the mon-
itored system memory to acquire memory snapshots. The
functionality of the driver is rather straightforward: given
an address and size of a snapshot, it fetches the region from
the monitored system memory. The aforementioned Data
Structure Acquisition Engine adds usability to the snap-
shot-taking capability of the DMA module. The Address
Translation Engine translates the virtual addresses of the
monitored system into a physical address. The Address
Translation Engine implements a virtual to physical address
translation process of the monitored system in KI-Mon. The
Address Translation Engine performs page table walks by
fetching the corresponding entries of the page table in the
monitored system’s memory.

5.3 ZONE_KIMON Implementation

Here we explain the KI-Mon specific changes to the kernel
along with brief explanations of the kernel subsystems to
which the modifications are made. The set of changes can be
either enabled or disabled during kernel compilation with a
kernel option called CONFIG_KIMON as with other SoC spe-
cific kernel options. We made slight changes to the memory
initialization procedures during boot, the SLUB allocator, and
the Buddy allocator in order to create ZONE_KIMON.

During boot, the last N MB of ZONE_NORMAL, which is the
memory zone used for all regular allocations, is reserved for
ZONE_KIMON. In addition, we dedicate M MB of ZONE_KIMON
as a write-through hole - a cache-coherent monitored memory
space. The attributes of these pages are set to feature a write-
through cache policy such that all value changes on the pages
are immediately visible to KI-Mon. The values of N, M can be
adjusted to accommodate the volume of monitored objects.
Table 1 shows the size, the number of objects present (at the
time of measurement), and the total memory space consumed
by the object type. Note that the total memory is calculated as
the following: (#slabs “ pages_per slab * PAGE_SIZE). For
our experiments we used {16, 2 MB} which could hold all
present task_struct, vin_area_struct, and mm_struct
objects into ZONE_KIMON. The sizes of the zones can be
adjusted depending on the estimated total size of the moni-
tored object type.

The Buddy allocator is the kernel’s low-level memory man-
ager that keeps track of all pages assigned to each zone. When
requested pages from other components of kernel, the Buddy

kmalloc (sizeof (monitored_struct),
GFP_KIMON) ;

(a) Creation of kimon-monitored SLAB cache

kmem_cache_create ("monitored-struct-cache",
sizeof (monitored_struct),
0,
SLAB_CACHE_KIMON,
NULL) ;

(b) Allocating memory from KI-Mon slab cache

kmem_cache_alloc (monitored_struct_cachep,
GFP_KIMON) ;

(c) Allocating memory from general-purpose kimon slab cache

Fig. 7. Examples of ZONE_KIMON object allocation via kernel memory
allocation APls.

allocator consults the GFP flag specified and selects a zone
that suits the request. Then, the allocator iterates the free
pages list of the selected zone to find a page that it can spare.

Our version of the Buddy allocator returns a page from
ZONE_KIMON or the write-through holes accordingly upon
receiving GFP_KIMON or GFP_KIMON_COHERENT. In addi-
tion, we slightly modified the Buddy allocator so that the
mutual exclusiveness of ZONE_KIMON and other zones is
ensured. That is, we modified the the optimizations that
allow cross-zone allocations and migrations on special occa-
sions (e.g., ZONE_NORMAL is running low) such that it does
not involve ZONE_KIMON. As a result, no allocation requests
that do not carry the GFP_KIMON flag receives a memory
block in ZONE_KIMON and vice versa.

The SLUB allocator is a high-level allocator in the kernel
that is built on top of the low-level Buddy allocator. The
SLUB allocator maintains a set of slab caches for different
object types. The general caches organized by allocation
size, so called kmalloc-N (i.e., kmalloc-8, kmalloc-16,
kmalloc-128) store all objects that are allocated by the
generic kmalloc function calls. Caches for specific object
type can also be created. For instance, the kernel creates a
separate caches for frequently used objects such as task_
struct or inode [20], [21]. When the SLUB allocator needs
free pages to expand an existing object cache or create a new
one, it invokes the Buddy allocator.

We added support for monitored object caches in the
SLUB allocator. Similar to the existing general caches, we
added kmalloc-kimon-N caches that reside in ZONE_
KIMON. This enables developers to invoke the kmalloc
function with GFP_KIMON and object size (which will be
rounded) to have the object placed in the monitored area as
shown in Fig. 7c. Also we let a new monitored object cache
can be created by passing the SLAB_CACHE_KIMON flag to
the object cache creator function Fig. 7a and allocate objects
on the newly created monitored object cache as in Fig. 7b.

Our changes made to Buddy/SLUB allocator code is
included in the kernel code section which is monitored by
KI-Mon for immutability. For this reason, the SLUB code
that contains our ZONE_KIMON-related modifications can-
not be altered. In addition, the management data structure
that represents slabs (i.e., struct kmem_cache) is stored
in ZONE_KIMON for monitoring. Hence, the adversary can-
not subvert the slab data structure so that the monitored
objects to be placed in zones other than ZONE_KIMON.
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TABLE 2
Examples of Attacks on Mutable Kernel Objects

Rootkit Name
Adore-NG 0.41

Target Object Type Object Type

inode- >i_ops
task_struct- >
{flags,uid, ...}
module->1list

Control-flow component
Data component

Data component

Knark 2.4.3 proc_dir_entry Control-flow Component
task_struct->flags Data component
module->1list Data component

Kis 0.9 proc_dir_entry Control-flow Component
tcpd4_seq fops Control-flow Component
module->1list Data component

EnyeLKM 1.3  module->1list Data component

5.4 KI-Mon MonitoringRule Examples

In order to illustrate the monitoring capabilities of KI-Mon
and the programmability of its API, we developed two
MonitoringRule examples against the two real-world rootkit
attacks, ported to operate on the Linux kernel running on
our prototype, where the VFS hooking attack from Adore-
NG is an example of an attack on kernel control-flow com-
ponents and the LKM hiding attack from EnyeLKM is a kernel
data component manipulation attack.

The two examples that we choose, represent real-world
rootkit attacks on control-flow and data components. We
analyzed the open source real-world rootkits [22], [23], [24],
[25], [26] and referenced works that analyzed the behaviors
of well-known rootkits [1], [27], [28], [29]. Table 2 summa-
rizes some of the attacks on kernel mutable objects identified
from the rootkits. These well-known rootkits manipulate
both the control-flow and the data components. It is notice-
able that the VFS hooking attack and its variants, which
manipulates the control-flow components of Linux Virtual
File System including the proc file system (VFS) [20], [30], are
popular for being deployed to hide files, processes, and net-
work connections. Also, the LKM hiding was a common
behavior among the analyzed rootkits. The attack manipula-
tes a module- > list structure to hide an entry in the Loadable
Kernel Module (LKM) list. The rootkits utilize LKMs as a
means to inject kernel-level code into the victimized kernel,
and they launch the LKM hiding attack once their malicious
code is loaded in the kernel memory space.

One of the two MonitoringRules we implemented is built
using the HAW-based verification template to detect the
VES hooking attack. The other MonitoringRule is built using
the Callback-based Semantic Verification template to dem-
onstrate the detection of the LKM hiding attack. The rest of
this section provides the two attack examples and our Moni-
toringRules in detail.

VFS Hooking Attack. The Virtual File System (VFS) [20],
[30] provides an abstraction to accessing file systems in the
Linux kernel; all file access is made through VFS in the mod-
ern Linux kernel. The kernel maintains a unique inode data
structure for each file, which includes a fops data structure
that stores pointers to the VFS operation functions such as
open, close, read, write, and so forth. Various critical infor-
mation about the kernel, such as the network connections
and the system logs, are stored in the form of a file and are

queried via the VFS interface. Rootkits are capable of
directly manipulating the functionalities of VFS. More spe-
cifically, they can hook the VFS operation functions of the
fops data structure in a file to manipulate the contents read
from it. Examples of malicious exploitation of VFS include
hiding network connections or running processes, associ-
ated with the attacker. In Linux,/proc [30] contains impor-
tant files that maintain system information. By hooking the
VFS data structure that corresponds to /proc, the adversary
can deceive administrative tools that rely on /proc for
retrieving system information.

VES MonitoringRule. The implemented VFS Monitoring-
Rule applies the HAW-based Verification method to detect
VFS hooking attacks on /proc in the Linux filesystem. We
observe that the VFS operation function pointers in the fops
data structure store the addresses of the legitimate filesys-
tem functions. For instance, the VFS function pointers of the
data structure of a file in a ext3 filesystem, point to ext3
operations in the kernel static region. In the same way, the
fops data structure of a file in an NTFS file system includes
pointers to NTFS operations. Using this property, we apply
HAW-based Verification to detect this particular attack. The
procedural flow of the monitor is as follows: First, we trace
the exact location of the fops data structure using the DMA
module and Address Translation Engine. Next, we set the
function pointers as critical regions of the MonitoringRule,
and the location of the operation functions of the known file
systems - such as ext3, ext2, and NTFS - as the whitelist.
With these settings, VIMU notifies the onHawEvent func-
tion of the MonitoringRule, which will subsequently pro-
vide notification of this likely malicious event.

LKM Hiding Attack. Many rootkits take advantage of the
Linux kernel’s support of LKM. Initially designed to sup-
port extending of the kernel code during runtime, The
LKMs are often used as a means to inject malicious code
into the highest privilege level in a system. Moreover,
adversaries often manipulate the linked list data structure
that maintains the list of loaded LKMs in order to conceal
malicious LKM loaded in the kernel. The following code
line frequently appears in rootkits that are injected via
LKMs:

list_del_init(&__this_module.list);

The kernel function list_del init removes the given entry
from the list in which it belongs. The developers of rootkits
insert the code into the module_init function, so that the
malicious LKM will be removed from the linked list upon
its load. If the snapshot is not taken immediately, this attack
cannot be detected because it removes itself from the linked
list as soon as it gets loaded.

LKM MonitoringRule. LKM MonitoringRule exemplifies
the Callback-based Semantic Verification template used in
KI-Mon. By setting the next pointer of the LKM linked list
head as the critical region of the MonitoringRule, KI-Mon
gets notified of the insertion of a new LKM as well as the
address of the newly inserted module structure. When a new
LKM is inserted, the onHawEvent function of the Monitor-
ingRule is triggered, and it requests the DMA module to
obtain a snapshot of the new module’s code region and the
hash accelerator to hash the contents of the region.
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Fig. 8. CPU State timeline of KI-Mon on ARM prototyping board vs. Snapshot-only Monitor in execution of LKM Monitoring Rule: X-axis represents
the time elapsed in microseconds, and Y-axis represents the CPU state as either busy or idle. The labels in each blocks are the names of the func-
tions being executed during that time. KI-Mon stays idle prior to the occurrence of monitor event, whereas snapshot-only monitor is keeping CPU

busy due to snapshot polling.

The rest of the procedure to verify if the new LKM is hid-
den from the list is as follows. First, the monitor waits for an
arbitrary amount of time (30ms in our implementation).
This is to give enough time for the rootkit LKM initialization
procedure which often include code that hide the LKMs in
the initialization function [22], [23], [24], [25]. Second, the
linked list is traversed with the Data Structure Acquisition
Engine to check if the inserted LKM is still in the list. Third,
if the LKM is not found in the list, we walk the page table
using the Address Translation Engine to verify that the vir-
tual to physical address mapping that correspond to the
LKM'’s code region has been deleted. If the mapping does
not exist we can assume that the LKM code, whose repre-
sentation in the linkedlist has been removed, is also deleted
on memory.

If the mapping does exist a hash check on the contents on
the region becomes necessary. This is because it can indeed
be a case of LKM hiding attack or that the region has
already been deallocated then re-allocated for other mem-
ory allocation requests. Recall that KI-Mon has taken a hash
of the LKM's code region: we compare this hash against the
hash of the current contents of the physical memory. If the
two hashes match, this indicates that the LKM that was not
found in the linked list iteration, is not properly freed from
the memory. In other words, the inconsistency between the
LKM linked list and the memory contents reveals the LKM
hiding attack.

The fact that we could check the page tables first for the
LKM region mapping to avoid relatively more costly hash
checking, is because the kernel manages the memory alloca-
tion and deallocation for the LKMs using vmalloc and
viree or their variants. These functions make use of the
kernel’s vmalloc region whose address mappings are man-
aged dynamically. Hence, a vmalloc function call creates a
new mapping in the vmalloc region and vfree removes an
existing vmalloc region address mapping. This is unlike
how the kmalloc function and its variants operate; they
merely request or release memory chunks to the kernel’s
SLUB allocator which manages all pre-mapped kernel
memory. We take advantage of this characteristic of the
LKM memory allocation to minimize hash checks.

6 EVALUATION

The two MonitoringRule types (VFS,LKM) are designed to
support all known memory attacks discovered in our collec-
tion of real-world rootkits as explained in Section 5.4. In this
section, we evaluate the effectiveness of KI-Mon in terms of
performance detection capability.

6.1 Monitor Processor’s CPU Usage

Efficient usage of the CPU and memory bandwidth is
another beneficial aspect for a hardware-based external
monitor, such that the monitor can be implemented even
with less powerful hardware components. We inserted
checkpoints in the software components of KI-Mon and the
snapshot-only monitor to analyze the CPU usage of the two
monitoring mechanisms. We used the LKM hiding attack
example to illustrate the difference in CPU usage between
KI-Mon and the snapshot-only monitor.

Fig. 8 shows the execution timeline of the two monitoring
schemes. The timer API for the Xilinx Zyng-7000 board was
used to measure the consumed CPU cycles of each functions.
As shown in the figure, the snapshot-only monitor repeats the
snapshot-based polling before eventually capturing the exis-
tence of a newly inserted LKM, whereas KI-Mon stays idle
until a HAW-event is received from VIMU. The snapshot-
only monitor keeps the external monitor’s CPU active with
the snapshot polling until the occurrence of an event.

Each block represents functions that are executed by the
LKM MonitoringRule upon the insertion of an LKM by KI-
Mon and the snapshot-only monitor. Note that the functions
executed after the detection of the events are the same for
both monitors. Each snapshot used in the polling takes
400 microseconds of CPU time to read 16 bytes of the LKM
linked list head. The getLKMHash() took 5600 microseconds
for 280 bytes to take a snapshot of the code section of the
LKM. The checkLKM() spent 2000 microseconds of CPU
time to iterate the LKM linked list of 6 entries to find the
newly inserted module. Because it found that the newly
inserted module is missing in the list, it took another
1,750 microseconds of CPU time to look up the page table
entry of the LKM address. The compareHash() is finally
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Fig. 9. CPU Cycles Consumed in Operation of KI-Mon and Snapshot-
only monitor: X-axis represents the time elapsed in seconds, and Y-axis
represents the sum of CPU cycles of the external monitor used in log-
scale. The vent at the 17th second is the LKM hiding attack. Snapshot-
only monitor constantly consumes CPU cycles whereas Kl-Mon stays
idle until an event is occurred.

executed and took 5,600 microseconds to take a snapshot of
the region that is supposedly the code section of the hidden
LKM to confirm that the LKM is indeed hidden. Thus, a
total of 14,950 microseconds of CPU time were used to ver-
ify the event. KI-Mon only uses a total of 14950 microsec-
onds of CPU time for the example, whereas the snapshot-
only monitor uses additional CPU time for snapshot poll-
ing. Although only a part of the snapshot polling is shown
in Fig. 8, it should be noted that the polling is constantly
running to consume CPU time.

While Fig. 8 shows the state of the CPU, Figure 9 com-
pares CPU usage rates between the snapshot-only monitor
and KI-Mon. The CPU cycles consumed were calculated
from the processor times that we obtained for Fig. 8. Before
the occurrence of the attack, the snapshot-only monitor
shows a steady usage over 10° cycles per second while
KI-Mon does not consume any CPU cycles. At 18 seconds
from the origin, an LKM hiding attack was launched using
the rootkit sample and both monitoring mechanisms
detected the modification and executed the verification pro-
cedures, which consume CPU cycles. The snapshot-only
monitor consumes additional CPU cycles to verify the event
on top of the periodic polling, whereas KI-Mon consumes
only the required number of cycles for verification.

The fundamental difference in the monitoring mecha-
nisms is shown in this experiment. For the snapshot-only
monitor to detect an event that occurs with a time interval
of t seconds with a snapshot-polling frequency of f hz, a
total number of snapshots n is calculated as ¢ * f. The times
of occurrences of modification events on the monitored data
structures are often unpredictable. For instance, connecting
a new USB device to a Linux machine might trigger the
loading of a corresponding driver LKM. Even for such
unpredictable rare events, however, the snapshot-only mon-
itor has no choice but to keep taking snapshots for possible
events. Moreover, the frequency of the snapshots may need
to be increased to keep up with frequently-changing objects,
and this increases the number of snapshots used for polling.

KI-Mon does not consume CPU cycles until an event trig-
gers its operation, whereas the snapshot-only monitor con-
tinuously consumes a significant number of CPU cycles
until an event is captured. KI-Mon overcomes the ineffi-
ciency of the snapshot-only model with its event-triggered
mechanism. VIMU replaces the snapshot polling with bus
traffic without consuming any CPU cycles because it snoops
the bus traffic for modification events. Also, not all events
need to be inspected in KI-Mon’s mechanism since VIMU
filters known legitimate changes with HAW.

6.2 Write-Through Monitoring Zone

As mentioned in Section 5.3, ZONE_KIMON and our changes
to the kernel memory allocation APIs provide a way to allo-
cate a dedicated memory region that can be continuously
monitored with KI-Mon’s bus snooping mechanism. To
illustrate the effectiveness of this scheme, we conducted an
experiment on the detection performance of KI-Mon’'s
snooper in normal memory(i.e., write-back cache memory)
against the dedicated cache-coherent memory region. We
allocate a 4-byte memory block in ZONE_NORMAL which is
by default governed by the write-back cache policy. We ini-
tialize the memory block to 0. Then, we increment the value
in the block by 1 every 0.5 seconds using the kernel timer
callback. The snooper is directed at the memory block to
detect any value change that occurs in the block. We repeat
the same experiment with a write-through memory block
from ZONE_KIMON that is allocated by invoking kmalloc
with the GFP_KIMON_WT flag. Fig. 10 illustrates the memory
value changes detected by the snooper in the two memory
blocks with different cache policies.

However, the write-through cache policy, that reflects all
memory content changes onto the memory continuously, is
innately inferior to the write-back cache policy in terms of
performance. For this reason, we see that there is a certain
tradeoff in monitoring a kernel object to detect all modifica-
tions in a timely manner, can be costly depending on the
access frequency of the monitored object.

We performed a set of simple microbenchmarks that esti-
mates the cost of using the write-through monitored zone in
ZONE_KIMON. We prepare two 10 MB arrays—one gov-
erned by the write-through cache policy and the other
write-back. We measured the processor’s cycle counter to
measure the total number of cycles elapsed for array initiali-
zation with memset () for both write-through and write-
back arrays. We measured the cycles for array-to-array con-
tent copying using the memcpy function for different source
and destination cache policy combinations (e.g., WB—WB,
WT—WT, WB—WT). Each test was performed 100 times.

Fig. 11 shows the result of the benchmark. Note that the
test was performed on the raspberry pi 2 board to rule out
any pecularities of the processor cache behavior on the
FGPA implementation. As shown in Figure Fig. 11, the per-
formance degradation is rather significant when the write-
through array is the source of the memory transaction. The
inner workings of the processor cache are not explicitly
explained in the ARM architecture manual [31]. We con-
sider the results an indicative for the performance degrada-
tion of the limited use of a write-through cache policy
limitedly, and we are still investigating the ARM
architecture’s cache behavior.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on September 16,2020 at 19:41:44 UTC from IEEE Xplore. Restrictions apply.



LEE ETAL.: KI-MON ARM: A HARDWARE-ASSISTED EVENT-TRIGGERED MONITORING PLATFORM FOR MUTABLE KERNEL OBJECT

a0 Snooped Memory Value Changes in Write-through cache page

297

Snooped Memory Value Changes in Write-back cache page

180 —

o
=]
T
1

Memory Value over Time
g
T
.

0 1 1 1 ! 1 1 1 1 1

Memory Value over Time
@ ® =) o N > =
g 8 8 8 3 3 8
T T T T T T T

oO
o
o
OO
o
o

o
| | | | | | |

IS
S
T
o
1

N

S
T

o
1

1 1 1 1 1

o

0 10 20 30 40 50 60 70 80 920 100
Time Elapsed in Seconds
(a) Snooping on page with write-through cache policy

30 40 50 60 70 80 920 100
Time Elapsed in Seconds
(b) Snooping on page with write-back cache policy

Fig. 10. A memory block, monitored by Snooper Module, was initialized to 0 and incremented by 1 every 0.5 seconds until it reached 200. (a) and (b)
shows detected memory changes when the block was in a page with either a write-through cache policy or a write-back policy.

7 RELATED WORK

KI-Mon is an external hardware-based platform that enables
event-triggered kernel integrity monitoring. Monitoring
rules can be implemented using the KI-Mon API to monitor
mutable kernel objects with invariants. In order to discuss
the novelty of our work, we introduce previous works about
hardware-based integrity monitoring, monitoring of muta-
ble kernel objects in general, and event-triggered monitoring.
We also briefly discuss works that adopt the concept of an
independent auditor, and VMM self-protection.

7.1 Hardware-Based Kernel/VMM Integrity
Monitoring

Before VMM became a popular platform on which to build
kernel integrity monitors, several hardware-based operating
system kernel monitors were proposed. Zhang et al. [32] was
one of the first to propose the concept of integrity monitoring
with a coprocessor. Petroni et al. [6] presented Copilot, an
external hardware-based kernel integrity monitor based on
memory snapshot inspection for static kernel regions.

When virtualization technology emerged, many VMM-
based approaches to kernel integrity monitoring were also
introduced. A majority of works in kernel integrity monitor-
ing were implemented on VMMSs due to the ease of develop-
ment. However, the expansion of VMMs in both code size
and complexity, as well as the attention of researchers and
attackers, propelled the discovery of vulnerabilities in VMMs
themselves [10], [11], [12], [13]. As a consequence, works that
strived to secure the integrity of VMMs with the assistance of
hardware support were presented to address the issue [8], [9].
An alternative approach was to implement minimalistic
VMM, so that static analysis could be applied to the mini-
mized attack surface to mitigate vulnerability [5], [33], [34].

HyperSafe [35] took a different approach. This work pro-
posed a self-protection scheme to ensure the integrity of the
static region and control flow of VMMs. Azab et al. pro-
posed HyperSentry [8], a VMM-integrity monitor frame-
work in which the root-of-trust is a hardware component
(Intel SMM). Recently, in line with Copilot [6], Moon et al.
presented Vigilare [7], which introduces the concept of

snoop-based monitoring for static immutable regions of
operating system kernels using SoC hardware.

ATRA (Address Translation Redirection Attack). have shown
an illustration of attack that exploits the semantic gap
between the host and external monitor; the attack manipula-
tes host’s page tables and/or page table base register to relo-
cate the monitored objects in the virtual address space. KI-
Mon is also affected by the attack described in the paper.

7.2 Event-Triggered Monitoring

Works that deploy event-triggered monitoring have been pre-
sented, following the existing snapshot-based monitoring
schemes. Payne et al. [4] presented Lares, which provides a
VMM-based platform to add hooks to the monitored system
for monitoring; however, their work lacks monitoring
schemes that use the proposed technique. KernelGuard [2]
and OSck [1], mentioned in previous section, used the event-
triggered monitoring scheme in their works. KernelGuard, by

x108
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Fig. 11. Memory performance for write-through and write-back cache
policy using memset () and memcpy () on 10 MB arrays. WT denotes
write-through and WB write-back respectively. Y-axis represents number
of cycles to complete the task and labels on X-axis show source and
destination cache policy.
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hooking the VMM hypercall, achieved an event-triggered
method to map and monitor dynamic regions of the kernel. In
addition, OSck adopted both snapshot-based and event-
triggered schemes, and used event-triggered schemes to mon-
itor static regions of the kernel.

Even though previous works have dealt with the moni-
toring of kernel dynamic regions with event-triggered mon-
itoring, they are all designed on VMM-based platforms. On
the other hand, KI-Mon implements an event-triggered
monitoring scheme as well as having a hardware-based
platform on which the monitoring scheme operates. VMM-
based event-triggered techniques such as hypercalls or page
fault handler hooking are limited to VMM-based platforms.
pp Vigilare was the first external hardware-based system to
introduce event-triggered monitoring with its bus snoop-
ing [7]. However, its snooper module was only capable of
detecting the occurrence of write traffic on a fixed immuta-
ble region. It could not extract a newly updated value from
a modification event, nor could it trigger any further verifi-
cation processing with the event. Thus, Vigilare’s definition
of an event is rather primitive and was only sufficient for
monitoring a fixed immutable region in the kernel. In order
to monitor mutable kernel objects with invariants, KI-Mon
refines event generation from bus traffic monitoring by
extracting an address and value pair for each event; its
hardware-assisted whitelisting scheme eliminates unneces-
sary event generation for repeated benign updates. Also, its
callback-based semantic verification scheme enables moni-
toring of mutable kernel objects with semantic invariants.

7.3 Monitoring Dynamic Regions of Kernel

Early works in integrity monitoring of operating system
kernels have focused on the integrity of static regions. Since
monitoring static regions is rather straightforward, many
kernel integrity monitors apply similar techniques such as
hash checking [6]. Unlike that for static regions, monitoring
of dynamic regions of kernels has inherent challenges. As
studies have progressed in VMM-based and hardware-
based integrity monitoring, numerous works on the moni-
toring of kernel dynamic regions have been presented [2],
(3], [35], [36], [37], [38], [39].

The contents of the dynamic regions of kernels can be
mainly put into two categories: control-flow related data
and non-control-flow related data. Monitoring the linkages
of control-flow related data, which is also known as
Control-Flow Integrity (CFI), was introduced by Abadi
et al. [36]. Petroni and Hicks [3] defined State-Based Control
Flow Integrity (SBCFI) of Linux kernels. This system is an
approximation of CFI. They implemented a monitor that
checks the SBCFI of the Linux kernel on a VMM-based plat-
form. Rhee et al. proposed KernelGuard [2] to watch
dynamic data of a Linux kernel on a VMM-based platform.
Carbone et al. proposed KOP [39], which aimed to map
dynamic kernel data from a memory dump of the moni-
tored system. More recently, Hofmann et al. presented
OSck [1], which implemented existing monitoring schemes
comprehensively with the addition of self-created rootkit
attacks and detection mechanisms for monitoring kernel
dynamic regions on a VMM-based platform.

KI-Mon focuses on providing an event-triggered mecha-
nism as an architectural foundation for monitoring mutable

kernel objects with invariants. Although KI-Mon’s main
objective is not to monitor the dynamic regions of a kernel
as a whole, the architecture of KI-Mon and its API leaves
room for extensions that may cover more mutable objects in
the dynamic regions of the kernel.

7.4 In-Kernel Privilege Separation

Our host-side monitored memory organization scheme
ZONE_KIMON relies on an assumption that the memory
mappings stay intact. This is to say that we need to be sure
that the ATRA or similar attacks cannot undermine ZONE_
KIMON. Fortunately, there has been a significant advance-
ment in in-kernel privilege separation. Nested Kernel
removes all privileged instructions that may alter memory
mappings (e.g., load new page tables) and lock down all
page tables and sensitive read-only kernel objects. Instead,
it provides a set of virtual MMU interface; a set of functions
that include privileged instructions to perform memory
management tasks are protected in a region. All access to
the virtual MMU interface is forced through a secure
gate [40]. While Nested Kernel is implemented on the x86
architecture, SKEE [41] implements an idea on the same
path on the ARM architecture. SKEE prevents kernel from
performing memory management tasks as nested kernel,
and limits memory management privilege exclusively to
the isolated SKEE execution environment. While we did not
implement SKEE (whose source code is yet to be released),
we expect that it can be readily implemented to aid KI-Mon
in terms of memory management integrity such that the
mappings and memory attributes (i.e., cache policy) of
ZONE_KIMON is not maliciously manipulated.

8 LIMITATIONS AND FUTURE WORK

External integrity monitors including KI-Mon accesses the
host memory in physical addresses. On the other hand, all
software running on the monitored host reside in virtual
address space. Due to this semantic discrepancy, an attacker
may manipulate the virtual to physical paddress transla-
tions to relocate parts of kernel memory to a new non-
monitored location [42].

Recent advancements in the endeavour to secure kernel
have shown that the memory management privileges of the
highest privilege level (i.e., Ring 0) can be confined to a
small verifiable Trusted Code Base (TCB) [40], [41]. The
underlying idea is to eliminate all memory management
related privileged instructions from everywhere in kernel
but a compact TCB to which the rest of the kernel code
make memory management requests via secure gates.

We expect that this in-kernel privilege separation can be
employed in joint with KI-Mon to address the attack on
memory mappings. Additionally, by having a secure agent
within the in-host trusted code base, we expect a more inter-
active and in-close monitoring scheme can be further devel-
oped. We are planning on adapting the new kernel design
on our prototype as the most important future work.

9 CONCLUSION

In this paper, we have presented KI-Mon, an external hard-
ware-based monitoring platform that operates on an event-
triggered mechanism based on a VIMU hardware unit.
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Unlike the existing external hardware-based approaches, KI-
Mon is an event-triggered verification mechanism, designed
to monitor the integrity of dynamic regions of kernels.

We built the KI-Mon prototype for the ARM architecture
on an FPGA-based development board and evaluated the
possibility of monitoring dynamic data structures using LKM
attack and VFS attack examples. The hardware platform mon-
itors the host bus traffic and generates events, assisted by its
whitelisting capability of filtering benign updates, so that the
monitor will not be triggered by common benign updates.
This HAW-generated event triggers the software platform to
execute verification routines. Also, the KI-Mon API has been
developed to support the programmability of the monitoring
rules that takes advantage of this event-triggered verification
scheme. On the host side, we made necessary kernel changes
that make monitoring from external efficient as well as allevi-
ating possible cache coherency issues.

Our experiments have shown that KI-Mon consumes sig-
nificantly fewer CPU cycles due to its event-triggered mech-
anism because it eliminates the need of constant snapshot-
based polling of the monitored region. As to the application
of write-through cache policy on a monitored region, we
performed benchmarks that show the effect of the write-
through cache policy. Overall, KI-Mon lays an architectural
foundation for an event-triggered kernel monitoring mecha-
nism on an external hardware-based monitor.
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