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Abstract—Object Layout Randomization (OLR) is a memory
randomization approach that makes unpredictable in-object
memory layout by shuffling and relocating each member fields
of the object. This defense approach has significant security
effect for mitigating various types of memory error attacks.
However, the current state-of-the-art enforces OLR while compile
time. It makes diversified object layout for each binary, but the
layout remains equal across the execution. This approach can be
effective in case the program binary is hidden from attackers.
However, there are several limitations: (i) the security efficacy
is built with the premise that the binary is safely undisclosed
from adversaries, (ii) the randomized object layout is identical
across multiple executions, and (iii) the programmer should
manually specify which objects should be affected by OLR. In this
paper, we introduce Per-allocation Object Layout Randomization
(POLaR): the first dynamic approach of OLR suited for public
binaries. The randomization mechanism of POLaR is applied
at runtime, and the randomization makes unique object layout
even for the same type of instances. As a result, POLaR achieves
two previously unmet security primitives. (i) The randomization
does not break upon the exposure of the binary. (ii) Repeating the
same attack does not result in deterministic behavior. In addition,
we also implemented the TaintClass framework based on DFSan
project to optimize/automate the target object selection process.
To show the efficacy of POLaR, we use several public open-source
software and SPEC2006 benchmark suites.

I. INTRODUCTION

An object is a set of relevant data that often includes

security-relevant members, such as pointers. Memory cor-

ruption vulnerabilities are majorly caused due to heap er-

rors which involve using objects. This makes the in-object

layout of member variables important for the attacker to

launch the exploits successfully. For instance, to abuse an

object type confusion vulnerability, attackers must calculate

the relative position of confused member variables. Similarly,

while overwriting an object via buffer overflow, attackers must

determine which member variables will be overwritten and

which ones will remain intact (e.g., attackers should avoid

corrupting irrelevant member variables, which could result

in an unexploitable crash). Such examples can be found in

various exploit-kits1.

The adoption of randomness in object layout has been

discussed previously to address the problems as mentioned

above [39], [43]. In particular, the latest Linux kernel has

introduced a new feature that randomizes the structure layout

1For example, GreenFlash Sundown, RIG, and Magnitude exploit kits [5]
use an Adobe Flash vulnerability, CVE-2018-4878 [2] (use-after-free bug on
DRM object and assume fixed object layout of MeM_Arr class)

of kernel objects at compile time [16]. However, the technique

is designed with an assumption that the binary is hidden from

the adversary. Therefore, the current approach of object layout

randomization (OLR) breaks if the attacker has access to the
binary. This assumption is plausible in server-side system

environments. The server-side application typically provides

its service via controlled network access thus preventing the

potentially malicious users from accessing the binary content.

However, the assumption breaks for client-side applications as

the binary is publicly shared among users.
To apply OLR for publicly disclosed binaries with improved

security primitives, we propose Per-allocation Object Layout

Randomization (POLaR), which applies an independently ran-

domized memory layout for each object allocation. Because

the randomization of POLaR is applied dynamically at allo-
cation time, attackers cannot predict the memory layout of an

object even if they have access to the binary. Furthermore,

POLaR randomizes the memory layout differently for object
instances of the same types. Therefore, memory corruption

attacks such as type-confusion become even more difficult to

exploit.
The prototype of POLaR uses LLVM-based compiler tech-

niques for code instrumentation. POLaR analyzes allocation

sites of the newly allocated object and automatically finds (i)

its initialization code, and (ii) code that accesses the object at a

later point, (iii) its de-allocation site, and (iv) its memory copy

site. The codes regarding any object randomized by POLaR is

instrumented to additionally perform an object layout lookup
process upon any access to member variables.

As one can imagine, POLaR requires substantial perfor-

mance cost due to increased memory access for using objects.

Therefore, applying POLaR to entire objects could be infeasi-

ble in practice. For practicality, we discuss issues regarding

automatic object selection which is a best-effort approach

for POLaR performance optimization. Whereas existing OLR

chooses randomization target objects by programer’s manual

decision (possibly for any objects), POLaR introduces the

TaintClass framework to systematically decide the candidate

objects for randomization as selective decision process should

be mandatory considering the performance impact. The Taint-

Class framework uses a memory tainting technique based on

an open-source data analysis tool (Data Flow Sanitizer) to

track objects that are potentially tainted by untrusted input.
The contributions of this paper are summarized as follows.

• To the best of our knowledge, this is the first paper
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that introduces the design and implementation of per-

allocation object layout randomization dynamically at
runtime.

• We design and implement Per-object Randomization

framework that works with large-scale software such as

ChakraCore.

• We design and implement TaintClass framework that

automates the object categorization process systemati-

cally. Based on the data flow analysis results, TaintClass

automatically generates a list of objects that possibly

be abused in case of memory corruption; thus require

POLaR protection.

• We analyze the existing object layout randomization

approaches and discuss its security efficacies and limi-

tations.

• We conduct a series of performance evaluations to investi-

gate the performance cost and applicability of POLaR by

applying it to common applications, such as ChakraCore,

and SPEC2006.

• We present security case studies based on real-world

CVEs to verify the efficacy of per-allocation object layout

randomization.

The remainder of this paper is organized as follows. Sec-

tion II provides the background of the general object struc-

ture and memory exploit attacks abusing objects. Section III

shows the security effectiveness of the existing OLR and its

limitation. Section IV explains the design and implementa-

tion of POLaR. Section V evaluates the compatibility and

performance of POLaR using various applications and shows

the efficacy of TaintClass using real-world CVEs. Section VI

discusses metadata safety, optimization, and limitations. Sec-

tion VII reviews various related studies on object layout

randomization. Finally, Section VIII concludes the paper.

II. BACKGROUND AND ASSUMPTION

A. Attack Model

In this paper, we assume the adversary is capable of provid-

ing maliciously crafted input against software that has memory

corruption vulnerabilities. Specifically, the paper focus on

defending against heap memory corruption by introducing

on-the-fly object layout randomization approach, which has

not been explored previously. If the attacker successfully

bypasses POLaR (and other mitigations), she can ultimately

achieve malicious capabilities such as arbitrary memory read

(information leakage), or arbitrary code execution. We do not

assume that the attacker has such capabilities before bypassing

our defense.

The adversary model in this paper mainly abuses heap

corruptions. Many vulnerabilities fall into this category. Use-

after-free allows attackers to replace the content of an object

with an arbitrary chunk of data. To abuse this error, attackers

need to predict the layout of the object; thus, he/she can

trigger the intended behavior (i.e., hijacking a specific pointer

member variable). A type confusion vulnerability allows an

attacker to change the program’s memory layout interpretation

Fig. 1: Typical memory layout of an object aligned at pre-

dictable offset. Most of the objects have at least one pointer

member variable (vtable pointer) which makes them important

in security perspective.

between two different objects. Attackers abuse this confusion

vulnerability by maliciously switching the member variables

between two objects. To achieve this goal, it is essential for

the attacker to predict the exact memory layout of the objects.

B. Object Layout

Current state-of-the-art compilers (gcc, clang, and so forth)

assume that the data structure memory layout of any objects is

deterministic. As shown in Figure 1, the memory representa-

tion of code is always deterministic once the compiler decides

the relative order and offset of the object member variables.

Once the source code is compiled, repeated allocation of the

same object type yields the same memory layout. Because the

memory layout of the objects is fixed, it is possible to address

the object member variables by adding fixed constant to the

starting memory address (we refer to it as the base address)

of the object; this is an efficient approach. For example,

once the code knows the base address of the People object

in Figure 1, adding a fixed constant of 12 gives the memory

location of the height member variable. The fixed constant

(12 in this case) of any member variables do not have to be

calculated dynamically. Due to the deterministic offsets of the

internal object layout, an attacker often analyzes the layout

structure of various objects used by the program and uses

the information while mounting out-of-bound memory access.

Hence, POLaR aims the goal to randomize the internal layout

of any objects of the same type.

C. Linux Kernel’s Object Layout Randomization

The current approach of object layout randomization intro-

duced in the recent Linux kernel (randstruct) considers

randomizing the structure layout statically at compile time.

The objective of this approach is to divert attackers while

they launch their exploits targeted at useful types of fields,

such as function pointers or other sensitive data structures,

including security credentials (e.g., process uid) involved with

a privilege-escalation attempt. This current approach is not

only limited to the Linux kernel but also equally considered

in general software fortification process. Indeed, previous

academic papers discussed this issue [39], [43] as a feature for

randomizing the object structure layout at compilation time.
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According to the randstruct, the following objects are

statically randomized during source code compilation.

• Objects declared with __randomize_layout annota-

tion tags.

• Objects composed only with function pointers.

In addition, there is __no_randomize_layout annota-

tion tag for exceptional usage. The selected object’s member

variable layout is fully randomized or partially randomized

considering the cache line.

D. DataFlowSanitizer and Fuzzing

DataFlowSanitizer (DFSan) [4] is a tool that allows tracking

of the dynamic flow of particular data. To optimize the

performance of per-object layout randomization, we imple-

ment a TaintClass framework that distinguishes objects into

several categories on the basis of their influence by input data

(the details are discussed in Section IV). Using the DFSan,

TaintClass evaluates whether an object should be randomized

We combine a fuzzing technique with DFSan to maximize

the data flow coverage. To trace the data flow across the

library function calls (such as memcpy), DFSan provides

a customized ABI list. Fuzzing is a general technique for

automatically finding software bugs. However, in POLaR,

we use fuzzing to automatically discover mutable objects

whose content and allocation/deallocation are affected by a

program user who is a potential attacker. To combine the

fuzzing process with DFSan, POLaR uses libFuzzer [13] for

implementing libpng, libjpeg-turbo’s fuzzer.

III. SECURITY EFFECTIVENESS

In this section, we discuss the security efficacy and limita-

tions of the previously introduced object layout randomization

(OLR) and highlight the improvement which can be achieved

by POLaR.

A. Revisiting OLR

OLR affects various types of heap memory vulnerabilities.

Here, we use type confusion and use-after-free vulnerabili-

ties as representative example cases for discussing the effi-

cacy/limitation of current OLR approach.

1) OLR and Type Confusion: Type confusion vulnerability

is one of the common memory corruption vulnerabilities found

in modern software. The vulnerability is caused by the misin-

terpretation of an object. For example, the vulnerability allows

arbitrary control-flow hijacking in the following scenario.

There are two objects: (i) an object A that has a function

pointer as the third member variable; and (ii) another object

B that has an integer variable as the third member variable

(assuming that all member variables are equally aligned to 32

bits or 64 bits). Assume that the integer variable of object B
is fully controlled by the program user (i.e., the variable is

the integer ID of the user). In this situation, if the program

confuses the type between objects A and B, the user can hijack

the function pointer of object A because the program will

interpret the user-controllable integer value of object B as a

function pointer member of object A. The exploitability of type

confusion vulnerabilities is significantly dependent on the in-

object memory layout.

Therefore, OLR is effective against type confusion vulner-

abilities because it hides the in-memory layout of member

variables from attackers. However, triggering the type con-

fusion errors yields deterministic result under OLR because

the two confused member variables between two different

objects will always be the same although the attackers do

not know what such members are. The attacker can repeat

triggering the same result of type confusion. The advantage

of POLaR in this aspect is that it has a significant impact on

nurturing object type-confusion vulnerabilities by removing

memory layout determinism even for member variables of

identical object types.

2) OLR and Use-After-Free: Data objects are dynamically

allocated to the heap as required and should be freed when they

are no longer required. However, a program could accidentally

reference a freed object pointer (dangling pointer) and use the

object as if it were still allocated, which is known as use-after-

free. The use of dangling pointers itself does not cause any

harm (except that free metadata overwrites the object) to the

program. However, if the application recycles the freed object

for the attacker-controlled data allocation, it becomes a severe

security breach, allowing the attacker to manipulate the entire

content of an object. To abuse use-after-free vulnerabilities,

attackers must successfully re-allocate the dangling pointed

memory space and place the maliciously crafted fake object.

The key here is that the attacker expects how the program will

interpret the fake object on the basis of static analysis of the

object memory layout. Therefore, if the object memory layout

is dynamically determined at runtime, the attacker’s exploit

code cannot define the fake object as intended. Consequently,

as with the type confusion vulnerability, the randomness of

OLR also hinders the exploitation of use-after-free vulnera-

bilities. Unfortunately similar to the type-confusion example

discussion, OLR allows deterministic reproduction of bug

triggering.

B. Improving the security of OLR

Existing OLR approach deludes attackers from abusing

broad range heap vulnerabilities such as use-after-free and

type-confusion. However, there are some limitations in the

current version of OLR. First of all, OLR is only effective in

case the affected binary is hidden from the adversary. Second,

the security effectiveness of OLR is less effective against re-

peated execution attempts as the changed object layout remains

equal across executions. POLaR addresses such limitations by

adopting the OLR dynamically at allocation time. We note

that POLaR changes the in-object memory layout (optionally

adding unused member variables to increase the entropy) even

for objects that are of the same type. Figure 2 depicts how

POLaR changes the memory layout. This increases the security

effectiveness for type-confusion attacks, repeated exploitation

attempts, and so forth. In particular, POLaR improves OLR in

terms of the following problems.
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Fig. 2: The effectiveness of POLaR over OLR. Per-allocation randomization changes the in-object memory layout for object

instances of the same type. OLR does not provide such diversity as the randomization is statically applied based on source

code.

1) Hidden Binary Problem: The major limitation of OLR

is that it randomizes the object layout at compile time. The

randomization methods, randomized structure information is

stored inside the binary. Reverse engineering the binary would

trivially reveal such information. This usage model confines

the security efficacy of OLR only to the server-side applica-

tions which do not provide the application binary to the users.

Consequently, the OLR approach cannot be applied for client-

side binaries which are publicly shared among multiple users.

POLaR address this problem by enforcing the randomization

dynamically at allocation time. Because the object memory

layout is randomized at runtime, POLaR maintains its security

effectiveness regardless of the availability of the binary.

2) Reproduction Problem: Another limitation of current

OLR approach is that the randomized object layout is un-

changed across execution. This makes determinism for trigger-

ing an object corruption vulnerability such as type confusion,

use-after-free, and use-before-init. Because the randomization

happens upon compilation phase, any runtime object instance

that shares the same type shares the same layout. Also, the

once-randomized object layout remains same across multiple

executions. Therefore attacker can observe deterministic be-

havior by triggering the memory corruption with the same

input data. This allows the attacker to infer and analyze the

changed object layout. POLaR address this problem by (i)

randomizing the layout at runtime, and (ii) randomizing the

layout even for the same object types. We explain the design

and implementation details in Section IV to show how such

dynamic randomization is possible.

3) Object Selection Problem: Besides the security impact,

another limitation of OLR is that there is no systematic way of

choosing objects that require randomization2. To maximize the

performance efficacy, the target object selection policy of OLR

is important. At this point, the selection is manually performed

by programmers. Thus far, there is no standard, and there has

been no academic discussion regarding which objects should

be protected by OLR.

2Applying randomization against all objects is discouraged owing to
performance and other reasons (e.g., network packet protocols).

TaintClass

Feedback Framework

Per-object

Randomization Framework

Feedback

Data

Fig. 3: Overview of POLaR. The TaintClass framework pro-

vides the object list as feedback information for the random-

ization module. TaintClass is NOT mandatory for executing

POLaR hardened binary.

Heuristic selection can easily miss some important objects

as protection targets. For example, in the case of CVE-

2018-5703 [3] (use-after-free vulnerability of a Linux ker-

nel object), the vulnerability could have been mitigated if

the OLR was properly applied against the sock object in

net/sock.h. Unfortunately, OLR (via randstruct) in

the latest Linux kernel (v4.20-rc3) did not annotate this object

for randomization thus allowed attackers to abuse the use-

after-free. We discuss further details of the object selection

issue while introducing our TaintClass framework, which is a

sub-component of POLaR.

IV. DESIGN AND IMPLEMENTATION

In this section, we demonstrate the design of POLaR

and explain how our system can enhance the security level

of previous OLR. Figure 3 shows the overall architecture

of POLaR. There are two frameworks consists POLaR: (i)

the Per-object randomization framework which enables per-

allocation randomization based on LLVM/Clang and (ii) the

TaintClass feedback framework which tracks and analyzes the

user input data for POLaR’s target object selection based on

DFsan. Overall, POLaR is designed on top of LLVM and

DFSan for its back-end support.
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Class Information 

Generated by CIE with TaintClass Feedback

(Section IV.A.1)

Info ptr

…

0xcab3a…

People 

class hash

Class hash
Class Info

(member size)

…16 824 16

…8 8168

…8848

Layout ptr

…

0x6040B0

0x604000

Base addr

…

0xcab3a…

0xaabae…

Class hash Layout 

…0 34 7

…5 4D3

…2140

POLaR Metadata

(Section IV.A.2)

C

class: People { … };

……

People *A = new People;   # Class allocation

olr_malloc(People);

……

/* getelemetptr %class.People, 

%class.People * %people_ptr, i64 0, i64 2 */

A->height = 17                   # Member access

/* A = 0x604000 */

olr_getptr(A, 2);                 

……

People *B = A;                    # Class copy

olr_memcpy(B, A);

……

delete A;                            # Class free

olr_free(A);

0x604000 + 8 + 4 

D: Dummy

Fig. 4: Implementation details of POLaR. To support per-allocation randomization, POLaR requires binary instrumentation

based on LLVM IRs.

A. Per-object Randomization Framework
1) Class Information Extractor: The Per-object Random-

ization framework requires the source code of the program

to apply LLVM instrumentation later. The Class Information

Extractor (CIE) module takes the program source code and

TaintClass feedback data as input and generates information

for the target architecture regarding the structure and class

declaration using LLVM API. The information generated

by the CIE module includes class size, member types, and

member size. This information is embedded in executable files,

and it is passed to the POLaR runtime library; it will be used

later for the randomization.
2) Instrumentation: Randomizing the memory layout of the

same object type involves various implementation challenges.

The first challenge is instrumenting the existing code to

interpret an object layout before using it. This interpretation

process is automatically applied to the generated binary using

LLVM without changing the original source code. As the

LLVM-pass automatically instruments the code accessing the

objects, programmers do not have to consider the permuted

memory layout of the object. As a result, the programmer

does not have to alter any syntax. In particular, the following

functions and LLVM IRs are instrumented by POLaR: (i)

allocation/deallocation types (malloc, alloca, free, etc.) of

functions, (ii) getelementptr-like LLVM instructions

(getelementptr, extractvalue, insertvalue), and (iii) memcpy

types (memcpy, memmove, etc.) of functions.
The allocation functions need to be changed to generate the

object layout information of each allocated object and maintain

the information. Based on the information provided by LLVM

IR regarding the object type upon allocation, POLaR instru-

ments the allocation functions to use the object information for

randomizing the object layout generated by CIE and save the

allocated memory region and randomized layout as metadata

into POLaR object tracking library. Deallocation functions are

also instrumented to remove the metadata generated during the

previous allocation.

The getelementptr-like instructions [6] are typical LLVM

instructions for retrieving the address of member variables

in a class. For example, when program accesses the mem-

ory of the height variable of the People class in Fig-

ure 1, LLVM translate this function to getelemetptr
%class.People, %class.People *%people_ptr,
i64 0, i64 2. (where 0 is the indexing for the array type

and 2 is the position of the height variable. vtable: 0, age: 1,

height: 2). We instrument these getelementptr-like instructions,

modifying the way to access the member variable. Figure 4

depicts the details how the POLaR instrumented objects are

accessed with metadata.

Memory copying APIs, such as memcpy, are also instru-

mented for POLaR. For example, if the POLaR-applied object

is copied into another memory region, a duplicate copy of the

object can be created without any heap allocation attempt. This

duplicate copy is also subject to POLaR randomization. By

instrumenting the memory-copy APIs, POLaR randomizes the

object layout for the duplicate copy and additionally creates

valid mapping information for accessing the copy. This feature

could be disabled with the configuration for performance-

purposes, but the current implementation considers this feature

enabled by default.

3) Object Tracking: The second challenge for POLaR is

tracking the object allocation/deallocation, member access,

and memory copy sites. As described in Section IV-A2, we

instrumented these instructions and changed the execution flow

509



height

bmp->size 

bmp->width 

bmp->height

Fig. 5: Taint propagation example of the TaintClass framework against an untrusted BMP file input.

to be handled by the object tracking library instead. To apply

a different memory layout for each object, Object tracking

library tracks the object initialization code and instruments it

to obtain the metadata and randomize each object. The library

also implements the dynamic member offset calculation on the

basis of the POLaR metadata stored upon object allocation.

The randomization process of POLaR not only permutes the

sequence of existing member variables but also inserts dummy

member variables to increase the randomness entropy.

Furthermore, inspired by [25], [26], POLaR not only use the

dummy variables for increasing the randomization entropy but

also utilize it as a booby trap for detecting object corruption.

For example, to protect a function pointer (inside an object)

against buffer overflow bug, POLaR prepends dummy vari-

ables adjacently to the function pointer and utilize it as a booby

trap for overflow detection. This mechanism can detect an

attack attempt on the object in advance. Additionally, POLaR

detects obvious use-after-free attempts while regulating object

access using the metadata information.

B. TaintClass Framework

TaintClass is a feedback framework for POLaR target selec-

tion. The objective of TaintClass is to avoid heuristic/manual

selection (existing approach) of the randomization target ob-

jects as well as unnecessary randomization thus optimize the

performance of POLaR. The basic algorithm of the TaintClass

framework aims to find the input-dependent objects that are

controllable by a program user. For instance, some objects

only appear inside the program heap temporarily to setup the

initial graphic components and thus irrelevant for potentially

dangerous input parsing. Applying randomization to such an

object is meaningless. Existing OLR approaches manually

find the objects that interact with untrusted inputs in order

to adopt randomization against them. In POLaR, we automate

this process systematically by using the TaintClass feedback

framework, which aims to find such objects automatically by

using a data-flow tracking technique based on DFSan. We note

that TaintClass itself does not implement a data-flow tracking

algorithm. It utilizes DFSan’s support for labeling data of

our interest in byte granularity. Once we configure the initial

data source, DFSan internally tracks the data flow dependency

based on shadow memory implementation.

1) Class Tainting: The attack model in this paper assumes

that adversary abuses memory corruption with arbitrary crafted

input data. The goal of the attacker is to trigger memory

corruption bugs successfully (e.g., type confusion, use-after-

free) for exploitation primitive. The majority of client-side

applications takes untrusted input data with various interfaces.

For example, web-browsers takes JavaScript as an untrusted

input for its rendering, and various document parsers take

an untrusted input in multiple forms (e.g., files or network

stream). The vulnerability is triggered while processing such

untrustworthy input data. To process such data, program

interacts with various objects inside the heap, which can be

potentially abused by attackers.

To automatically enumerate the objects potentially subject

to the untrusted input, the TaintClass framework uses DFSan

to analyze the data flow and identify the objects affected by

the initially given input. Using DFSan, TaintClass taints the

in-memory propagation of the input data flow starting from

the initial input buffer or memory mapping. In case the input

is given as files, the initial buffer/mapping of the input is

handled by instrumenting the responsible system calls and

APIs (e.g., fread, and MapViewOfFile). While tracking the

memory propagation, TaintClass searches for the case in which

the propagation affects the content/allocation/deallocation of

any objects. If such objects are discovered, TaintClass collects

propagation information, which will be used later by POLaR.

The execution of TaintClass is orthogonal to the execution

of the hardened binary. We note that TaintClass and Per-

allocation Randomization framework can work in parallel;

feeding each other’s data.

Figure 5 shows a simplified example of the TaintClass

framework tracking the tainted information from a user-

supplied BMP file. In the source code, TaintClass initially

maps the file content to memory (e.g., read_bmp_data()).
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TABLE I: Object list reported by TaintClass framework against SPEC2006 benchmark applications. The life-cycle and contents

of the reported objects are potentially affected by an untrusted input.

App # of tainted objects Several samples of tainted objects
400.perlbench 20 sv, stat, cop, sublex info, jmpenv, logop, unop, scan data t, RExC state t, ...

401.bzip2 3 bzFile, UInt64, spec fd t
403.gcc 33 realvaluetype, ix86 address, type hash, stat, cb args, mem attrs, addr const, ix86 args, ...
429.mcf 2 network, basket

445.gobmk 21 move data, SGFTree t, gg rand state, worm data, dragon data, Hash data, string data, ...
456.hmmer 4 seqinfo s, comp, exec, ssifile s
458.sjeng 2 move s, move x

462.libquantum 0 -
464.h264ref 17 InputParameters, decoded picture buffer, pic parameter set rbsp t, ImageParameters, ...
471.omnetpp 10 cSimulation, cHead, Task, TOmnetApp, cPar, cArray, cPar::ExprElem, MACAddress

473.astar 7 wayobj, way2obj, regmngobj, workinfot, createwaymnginfot, regboundobj, regobj
483.xalancbmk 59 XalanDOMString, XObjectPtr, XalanQNameByValue, XalanQNameByReference, MutableNodeRefList, ...
libpng 1.6.34 8 png struct def, png info def, png xy, png XYZ, png color16 struct, png text, png time struct, ...

libjpeg-turbo 1.5.2 8 tjinstance, bitread working state, savable state, jpeg component info, j decompress ptr, ...
Chakracore 1.10 42 Js::HashedCharacterBuffer, Js::OpLayoutT Reg1, JsUtil::CharacterBuffer, Js::FunctionBody, ...

In this step, the memory contents are tainted with tags.

Later the initially tagged memory contents are traced when

the information is propagated via APIs such as memcpy or

instructions that reference such memory. In case the tainted

information propagates to an object, we consider the object to

be potentially affected by the untrusted user input. In addition,

TaintClass identifies exactly which object members (pointer

type or non-pointer type) are tainted. This information is used

later for optimizing the efficacy and dummy variable insertion

of POLaR.

2) Increasing Taint Coverage: DFSan is an efficient tool for

tracking taint propagation. However, if the taint propagation

is dependent on the contents of the input data, DFSan itself

is insufficient to achieve our objective. To address this issue,

we have incorporated the input generation of DFSan with

a coverage-guided input generation module from libFuzzer.

In general, libFuzzer is a coverage-guided test case genera-

tor designed to discover bugs. In the TaintClass framework,

we use only the coverage-guiding module and combine its

algorithm with the DFSan input case generation. As a result,

our TaintClass framework effectively distinguishes objects that

are dependent on the untrustworthy input and provides this

information to the main randomization module of POLaR. We

evaluate the efficacy of the TaintClass framework by using

it against open-source software and comparing the results

with object lists involved in publicly disclosed vulnerability

exploitation processes.

V. EVALUATION

In this section, we evaluate the POLaR from three perspec-

tives: (i) compatibility with existing software, (ii) performance

cost, and (iii) efficacy of the TaintClass framework. In the

case of compatibility testing, we choose the libpng library,

libjpeg-turbo library, V8 Javascript engine of the Chrome

web browser, and ChakraCore [1] JavaScript engine of the

Edge web browser. To evaluate the performance, we use

the SPEC2006 benchmark and various JavaScript benchmark

suites. Finally, for TaintClass evaluation, we survey public

CVE attack cases against libpng heap vulnerabilities. The

evaluation environments are Intel E5-2630 v3 (2.40 GHz)

CPU and 128GB RAM, running the 64-bit version of Ubuntu

16.04 Server. For the evaluation, we do not compare the

performance of OLR and POLaR as their target applications,

and key designs vastly differ from each other considerably.

The performance cost of OLR is assumed to be negligible, as

it does not impose a significant penalty besides reduced cache

utilization.

A. Compatibility

To demonstrate the compatibility of POLaR with existing

applications, we applied POLaR against all SPEC benchmark

applications, libjpeg-turbo, libpng, V8, and ChakraCore. First,

we applied POLaR to the entire set of objects without using

the TaintClass framework. In this case, we discovered some

compatibility errors only in V8 JavaScript engine. We found

that the reason for such failure is due to the implementa-

tion techniques leveraged in V8 custom garbage collector

(Orinoco). The current version of POLaR instrumentation

does not correctly handle such codes (can be resolved with

additional engineering efforts) therefore we excluded V8 at

this point. ChakraCore did not suffer such issues as it uses an

ordinary mark-and-sweep garbage collector.

Later, we applied TaintClass for target applications and

evaluated correctness with benchmarks. Table I lists the objects

reported by TaintClass. To maximize the code coverage for

the object discovery process, the TainClass Framework uses

a LibFuzzer with Edge-level code-coverage instrumentation.

This fuzzing step (which is not required for each execution)

requires several hours, as the input case generation for DFSan.

From the results in Table I, TaintClass did not mark any

objects of SPEC2006’s 462.libquantum [17] application for

POLaR randomization. The application is a quantum comput-

ing simulator that obtains input data via the main function

parameter. The input is directly propagated for floating point

operations; thus there is no object involved. We have confirmed

this manually by analyzing the application source code.

During the evaluation, we also audited the source code

and manually profiled the objects that are dependent on the
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Fig. 6: Performance overhead of POLaR based on the

SPEC2006 benchmark.

TABLE II: Performance overhead of POLaR based on the

ChakraCore benchmarks.

Benchmark Result RatioDefault POLaR DIFF
Sunspider (time) 2642.6 ms 2646.9 ms 16.7 0.20%

Kraken (time) 10369.4 ms 10386.1 ms 4.3 0.20%
Octane (score) 2728.7 2699 -29.1 -1.10%

Jetstream (score) 117.1 117.9 0.8 0.70%

* Sunspider, Kraken’s Result: smaller is better

untrusted input. Based on the manual discovery and automated

result of discovered objects, we evaluate the false-positive ratio

of the TaintClass framework. We discuss the false-negative

discovery issues in Section VI.

B. Performance

The performance impact of POLaR is expected to be high

due to the significant amount of memory access instrumen-

tation. With POLaR, memory access of randomized object

members will require additional steps of pointer dereferencing

in order to calculate the actual offset randomized by POLaR.

Therefore, the performance impact will be high against ap-

plications that excessively access object members, and it will

be low for applications that focus on other operations, such

as I/O or arithmetics. To optimize the performance cost of

additional lookup procedure of member variable offsets, PO-

LaR implements the hashtable-based caching mechanism that

store the previous result of the lookup procedure. Furthermore,

Polar remove the duplicate metadata when two objects have

the same randomized memory layout.

Figure 6 summarizes the SPEC2006 performance evalua-

tion. The performance overhead of the SPEC2006 benchmark

is around 5%, except for the sjeng [18] program. Sjeng is a

chess engine that takes the initial state of the chess pieces as

the only program input. With the given input, sjeng creates

objects for each state of chess pieces which are subject to

POLaR randomization. Due to the characteristic of the sjeng

program, the major bottleneck of the program’s performance

is object allocation/deallocation, which constitutes the worst

performance evaluation case. Table III lists the number of

allocation/free, member variable access, and cache hit against

the randomized objects.
POLaR was also applied to ChakraCore v1.10, a JavaScript

rendering engine of the Microsoft Edge web browser. We

used the standard test cases3 and JavaScript benchmarks

(Kraken [12], Octane [15], Sunspider [19], Jetstream [11])

provided by ChakraCore for the official testing purpose. All

the test cases worked correctly in both cases, and Table II

summarizes the benchmark results.
From the ChakraCore benchmark results, we can ob-

serve approximately 1% performance slowdown in Sunspider,

Kraken, and Octane. In the case of Jetstream, no measurable

performance variation was observed. We suspect that the

reason for such low-performance cost is due to the perfor-

mance optimization in ChakraCore engine minimizing the

heap allocation/deallocation operations.

C. Correctness of TaintClass Framework
The objective of the TaintClass framework is to automat-

ically discover objects whose contents and life-cycles are

affected by untrusted user inputs and thus provide information

to the POLaR randomization module. To evaluate the correct-

ness of the TaintClass framework, we manually inspect the

application source codes and exploit codes to enumerate all the

objects that are abused by attackers in their exploit. Later, we

compare the results of our analysis against the automatically

generated object list of TaintClass. For the evaluation, we

analyzed 35 CVE-based attacks against libpng and found heap

vulnerability cases that are suited for the evaluation.
The objects discovered by the TaintClass framework are

based on 3 hours (including fuzzing step) of the discovery

process. Table IV summarizes the evaluation. The TaintClass

framework successfully included all the objects that we discov-

ered by manually analyzing the exploitation while excluding

irrelevant objects in terms of the exploitation. We note that

TaintClass object selection result is a best-effort approach

based on tainting technique. The list is not theoretically proven

to be the unique correct result.

VI. DISCUSSION

A. Metadata Safety
POLaR keeps the randomized offset information per each

object as its metadata. There are some chances in which

vulnerabilities bypass our POLaR protection (e.g., via logical

bugs) and corrupt the metadata information of POLaR. At this

point, POLaR does not provide a solution for securely keeping

its metadata secret against other than hiding its memory

location. However, we plan to adopt modern state-of-the-art

solutions to protect the metadata against information leakage

attacks. For example, recent defenses such as Intel MPX [7],

SGX [9], MPK [8], and ARM TrustZone [10] provide special

memory regions for protecting critical information against

unintended memory disclosure.

3ChakraCore provides standard test codes for its benchmark.
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Fig. 7: Perfomance evaluation of POLAR against Chakracore benchmark

B. Instrumentation Problems
POLaR uses LLVM techniques to automatically instrument

code regarding object access. The instrumentation is auto-

matically handled in most cases by using the source code

syntax information. However, there is some exceptional code

that does not use common syntaxes for accessing objects. For

example, instead of referencing object member variables via

their declared names, some code manually calculates the offset

of a member variable from the starting address of an object.

In addition, complicated garbage collection codes in Chrome

V8 are yet incompatible with POLaR technique. However,

POLaR covers most of the general implementation issues

including aliasing/casting and sub-typing techniques. We also

note that regardless of the complicated implementation prob-

lems, serializable objects and packets are often unsuited for

instrumentation due to protocol conflicts.

C. Tainting Issues
The TaintClass framework for POLaR is an approach based

on DFSan by tracking the dependency between objects and

attacker-controllable input data. We combine the DFSan and a

coarse-grained fuzzing technique with LibFuzzer to implement

an automated object discovery process for the TaintClass

framework. However, DFSan lacks tainting support for some

of the API calls. Nevertheless, this is an implementation

issue which can be handled with additional engineering effort.

There is no fundamental design problem with this issue.

TaintClass has already implemented additional supports for

taint propagation which DFSan lacks in its implementation.

Although the taint propagation of the TaintClass framework is

properly implemented, there is no guarantee of discovering

all the objects that are potentially relevant to the exploit.

There could be certain cases where the TaintClass framework

excludes an object from randomization although untrusted

inputs can ultimately control it.

VII. RELATED WORK

A. Existing Object Layout Randomization

The basic concept of object layout randomization has been

discussed previously in the literature. For example, Data

Structure Layout Randomization (DSLR) [39] is a closely

related previous study on object layout manipulation. The

paper introduces the concept of object layout randomization
and demonstrates its efficacy by implementing it for kernels.

DSLR randomizes the relative order of member variables
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TABLE III: The number of allocation/free, member variable access, and cache hit attempts against the randomized objects.

App # of
Allocation Free Memcpy Member access Cache hit

400.perlbench 5,645K 0 3312 80B 74B
401.bzip2 36 37 0 34M 28M
403.gcc 51M 50M 0 0 0
429.mcf 1 0 0 9,105K 9,105K

445.gobmk 4000 0 0 72B 65B
456.hmmer 1 1 0 4,291K 3,677K
458.sjeng 20M 20M 18M 151B 128B

464.h264ref 450 450 298M 1,993M 1,871M
471.omnetpp 132 1 1 803 406

473.astar 12 12 354K 204 144
483.xalancbmk 28,686 19,985 26 1,000K 696K

TABLE IV: Automatically discovered libpng objects that

were used for exploitation.

CVE Descriptions Exploit-related Objects
2016-10087 null pointer dereference png {info, struct} def

2015-8126 heap overflow
png {info, struct} def

png color
2015-7981 out of bounds read png {struct def, time struct}
2015-0973 heap overflow png {struct def, byte}
2013-7353 integer overflow

png {struct, info} def
png unknown chunk

2011-3048 heap overflow
png {struct,info} def

png text

inside kernel objects. The primary objective of this approach is

to hinder the data structure manipulation attempts of rootkits.

In addition, dummy member variables are inserted while

randomizing the object layout in case the number of existing

member variables is insufficient. The basic idea of object

layout randomization is introduced in DSLR; however, its

approach is static. The major advancement of POLaR over

DSLR is that whereas the previous approach adopts the

randomization at compile time, POLaR applies randomization

at allocation time. This leads to a significant difference in

terms of security efficacy, implementation techniques, and per-

formance. One of the main advantages of POLaR that DSLR

lacks is the randomization of the object layout among the same
type of objects. Using LLVM-based instrumentation, POLaR

diversifies the object layout of multiple object instances of the

same type.

Record Field Order Randomization [43] (RFOR) also intro-

duced the concept of object layout randomization previously.

As with DSLR, the randomization phase of RFOR is at compi-
lation time. This changes the object layout per-binary. While

the details differ between DSLR and RFOR, both are based on

the same main idea for randomizing the sequence of in-object

member variables, which is statically assuming that the binary

is not revealed to attackers. We highlight the major drawbacks

of these previous studies, i.e., the security effectiveness is

easily broken once the attacker analyzes the binary. The threat

model and assumption of POLaR are based on the attackers

with greater capabilities (attackers have complete access to

the binary). Such an assumption advances the state of the art

while imposing various new challenges regarding design and

implementation which we addressed in this paper.

B. Diversifying Various Software Components

Numerous studies have introduced the idea of various

randomization approaches for exploit defense. Some ap-

proaches [44] [31] [36] randomizes the overall memory layout.

Others [24], [30], [34], [27], [35], [33] changes the instruc-

tions to randomize various semantics as a defense measure.

Since Android 7.0 randomizes the shared library loading

sequence [14].

The majority of these previous studies aim to hinder attack-

ers from predicting the general memory layout or make the

order and relative distances between objects less predictable.

The concept of shuffling and randomizing the order/distance

of heap data may seem similar to object layout randomization.

However, the details and its ramifications differ significantly.

The approach of randomizing the inter-object layout for each

allocation can be implemented without instrumenting the code

regarding object access, and it has orthogonal effects regarding

exploit mitigation. Unlike the approaches for overall heap

layout randomization (inter-chunk randomization), we focus

on randomizing the in-object layout of member variables.

To support such in-object layout randomization, the code

referencing each member variables of the object has to be

instrumented. Due to the code instrumentation, POLaR re-

quires a higher performance cost compared to inter-chunk

randomization. However, POLaR addresses memory attacks

(such as type confusion), which could not be mitigated by

inter-chunk randomization approaches.

C. Other Exploit Mitigations

Many studies aim to protect memory object bounds and

dangling pointers deterministically. They typically enforce the

bounds by inserting checks using compile-time instrumen-

tation. There are two primary approaches for deterministic

bounds protection. The redzone-based approach [41], [32] is

the most popular memory safety technique used by large-scale

software projects and fuzzers. It works by checking the access

permission of the given address before any memory access.

To detect overflows, inaccessible regions called redzones
are inserted between objects. Freed objects are marked inac-

cessible, and the address reuse is delayed via quarantine. Its

simple design minimizes the performance impact and achieves
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good compatibility. However, redzone-based approaches allow

out-of-bound access that falls into other objects. Pointer-based

approaches [40], [20], [47], [37], [28], [29] tracks the memory

access capabilities of pointers. Each study differs in terms

of how the capabilities are managed and when the checks

are performed. Pointer-based approaches can prevent more

out-of-bound accesses than redzone-based approaches because

access permission is dependent on pointers, not addresses.

However, most studies on these approaches focus on protecting

bounds between chunks. Checking in-object overflows has

not been fully explored thus far because it may cause a

high-performance overhead, or raise compatibility concerns

with existing software. POLaR deals with memory corruption

exploits, including in-object overflows.

In addition to memory safety instrumentations, a number

of studies on regarding dangling pointers mitigate use-after-

free vulnerabilities by either invalidating or detecting the

use of such pointers. DangNull and FreeSentry [38], [46]

keep map information regarding objects and their pointers.

Upon freeing an object, all the related pointers are set to

an invalid memory address. Dangling pointer access would

then cause a segmentation fault. DangSan [45] optimizes

this approach to scale heavily multithreaded applications with

many allocations. Undangle [22] detects dangling pointers at

an early stage where they are created. This approach uses

taint analysis to track pointers originating from the same

memory object. At any point, the origin of a given pointer

can be determined. By checking if the object is freed, it is

possible to detect the creation of dangling pointers. While

these solutions are effective at preventing dangling pointer

usage, corruptions by type confusion vulnerabilities are not

covered. POLaR mitigates both type confusion, overflow, and

use-after-free attacks.

Another type of memory corruption defense focuses on

securing vtables. For example, CFIXX [21] mitigates C++

vtable hijacking exploits. This approach is somewhat similar

to shadow stack approaches [23], [42]. When a C++ object is

created, its vtable pointer (e.g., commonly denoted as vptr)

is initialized by the appropriate constructor. CFIXX stores a

shadow copy of this vptr inside a safe region. Then, when

a virtual function call is needed, the vptr in the object

and its shadow copy are compared. Any modification of the

vptr can be detected in this way. However, corruptions of

other member variables are not protected. Function pointers

or security critical values inside the object are still subject to

malicious manipulation. POLaR provides mitigation against

malicious access to any type of member variable.

VIII. CONCLUSION

In this paper, we introduced POLaR, a first dynamic ap-

proach of OLR, and addressed various limitations of cur-

rent OLR approach with other improvements. Because PO-

LaR randomizes the in-object memory layout dynamically at

allocation time, the in-object memory layout between any

object instances (including those of the same type) becomes

unpredictable. The major improvement of POLaR over OLR

can be summarized as follows: (i) Dynamic randomization

approach of POLaR allows public sharing of the fortified

binary, (ii) randomization support for identical object type

prevents deterministic reproduction of bug triggering, and

(iii) TaintClass framework (which is a sub-component of

POLaR) provides automatic selection of object targets based

on data-flow analysis; improving the previous manual/heuristic

selection approach of OLR. Design and implementation of

POLaR is based on LLVM instrumentation. Performance and

compatibility are evaluated with open-source software and

benchmarks including libpng, libjpeg-turbo, ChakraCore, and

SPEC2006. According to the evaluation, the performance cost

of POLaR is around 5% in the SPEC2006 benchmark and

around 1% in the JavaScript application benchmarks.
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