
c o m p u t e r s & s e c u r i t y 8 2 (2 0 1 9) 1 1 8 – 1 3 9

Available online at www.sciencedirect.com

j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / c o s e

SGX-LEGO: Fine-grained SGX

controlled-channel attack and its countermeasure

Deokjin Kim

a , Daehee Jang

b , ∗, Minjoon Park

b , Yunjong Jeong

b ,
Jonghwan Kim

b , Seokjin Choi a , Brent Byunghoon Kang

b , ∗∗

a The Affiliated Institute of ETRI, Daejeon, Republic of Korea
b Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea

a r t i c l e i n f o

Article history:

Received 20 March 2018

Revised 6 November 2018

Accepted 4 December 2018

Available online 18 December 2018

Keywords:

Operating system

Intel SGX

Controlled-channel

ROP

Page fault

a b s t r a c t

The introduction of Intel Software Guard eXtension (SGX) prompted security researchers

to verify its effectiveness. One of the frequently discussed attacks against SGX is the side-

channel attack by gathering page-fault information (controlled-channel attack). Owing to

SGX’s hardware features, the faulting address of the enclave memory is page-masked . Be-

cause of this, both the controlled-channel attack and the defenses of SGX are built under

the assumption that an attacker observes the memory access attempts of the enclave code

with page-granularity . However, Van Bluck et al. recently demonstrated a controlled-channel

attack technique which negates the prior assumption of page-granularity . In this paper, we

introduce a new class of attack that stems from the reduced controlled-channel granularity,

i.e., the Version IDentification attack (VID). The goal of VID attack is identifying the detailed

code information inside SGX enclave by analyzing the fine-grained SGX controlled-channel.

To protect enclave memory from such attack, we design and implement SGX-LEGO, an au-

tomated system that adopts execution polymorphism to the SGX enclave code. Previous

defense approaches against controlled-channel attacks can be broadly categorized into two

types: (i) disclosing the fault information and (ii) rendering the fault information useless.

SGX-LEGO uses the latter approach by permuting the memory access sequence at the in-

struction level. In SGX-LEGO design, we leverage the concept of code-reuse-programming to

overcome the implementation challenges regarding SGX page management. In the evalua-

tion, we show how VID attacks the cryptographic functions, and demonstrate the efficacy

of SGX-LEGO in security perspective and performance.

© 2018 Elsevier Ltd. All rights reserved.

1

I
a
l
v

z

t
a
e
f
V

I

h
0

. Introduction

ntel Software Guard eXtension (SGX) provides confidentiality
nd integrity to an application even if the underlying privi-
eged software, such as the operating system (OS) or hyper-
isor, is untrustworthy. One of the most actively researched
∗ Co-first author.
∗∗ Corresponding author.

E-mail addresses: djkim@nsr.re.kr (D. Kim), daehee87@kaist.ac.kr (D. J
zoru@kaist.ac.kr (J. Kim), choisj@nsr.re.kr (S. Choi), brentkang@kaist.ac
ttps://doi.org/10.1016/j.cose.2018.12.001
167-4048/© 2018 Elsevier Ltd. All rights reserved.
opics regarding SGX is the side-channel attack. Side-channel
ttacks against the SGX environment are usually aimed at
xtracting memory contents from the enclave memory. So
ar, various SGX side-channel attacks (Shinde et al., 2016;
an Bulck et al., 2017b; Xu et al., 2015) have been introduced.

n particular, Xu et al. (2015) introduced an SGX side-channel
ang), dinggul@kaist.ac.kr (M. Park), yunjong@kaist.ac.kr (Y. Jeong),
.kr (B.B. Kang).

https://doi.org/10.1016/j.cose.2018.12.001
http://www.sciencedirect.com/science/journal/01674048
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2018.12.001&domain=pdf
mailto:djkim@nsr.re.kr
mailto:daehee87@kaist.ac.kr
mailto:dinggul@kaist.ac.kr
mailto:yunjong@kaist.ac.kr
mailto:zzoru@kaist.ac.kr
mailto:choisj@nsr.re.kr
mailto:brentkang@kaist.ac.kr
https://doi.org/10.1016/j.cose.2018.12.001

c o m p u t e r s & s e c u r i t y 8 2 (2 0 1 9) 1 1 8 – 1 3 9 119

3 Recent generation of SGX hardware supports dynamic page
permission. This paper is based on SGX spec 1.

4 Readable, writable, and executable.
attack referred to as controlled-channel attack that is based on
the observation of page-faults.

So far, controlled-channel attack revealed data inside SGX
enclave assuming the code was publicly available. Revealing
the code information inside SGX enclave was known to be in-
feasible once the SGX binary is first encrypted and dynami-
cally decrypted later inside enclave memory. For example, a
previous work (Schuster et al., 2015) encrypts the code section
(private code which contains the main logic) and decrypts it
with a public code fragment (allowed to be exposed) at run-
time using the decryption key provided by the trusted re-
mote party over the network. Once the static binary analysis
is stopped in this way, extracting the code information at run-
time is supposedly prevented because (i) SGX protects enclave
memory from direct read attempts, and (ii) the granularity of
controlled-channel attack is too big to extract the code infor-
mation. We point out that (ii) is no longer true due to the in-
troduction of fine-grained controlled channel. In this paper,
we explore the SGX controlled-channel attack in terms of code
disclosure attempt .

The essence of the controlled-channel attack is extract-
ing memory access patterns using page-fault information.
So far, researchers presumed that this memory access pat-
tern can only be observed with page granularity 1 which is
big enough to hide the detailed execution trace. Previous SGX
side-channel attacks assume that the OS can only observe
the faulting sequence of distinctive pages . In other words, con-
secutive page faults against the same page cannot be ob-
served outside the enclave. This is important primitive regard-
ing controlled-channel attack. For example, an adversary can
monitor the code page fault and realize that the control flow
has reached the page, but due to this primitive, the adversary
cannot tell how many instructions were executed inside such
page. However, recent work (Van Bulck et al., 2017b) demon-
strated a technique that allows malicious OS to observe con-
secutive memory access attempts against same page therefore
breaking this primitive.

The previous work (Van Bulck et al., 2017b) discuss the
ramifications of their technique in terms of SGX enclave data
exposure. In this paper, we extend their discussion and
demonstrate that this new development 2 not only advances
the efficacy of existing controlled-channel attacks against
data but also enables the attacker to reveal the code inside en-
clave memory. According to our experiments, the information
inside the SGX enclave such as the code algorithm, SDK library
version, and their configuration is no longer safely hidden ow-
ing to fine-grained controlled-channel attack. To study the ex-
tent of this problem, we define the concept of Version IDen-
tification (VID) attack against SGX and conduct experiments
on its issues. The idea of a VID attack is simple and straight-
forward. Since the page granularity of fault monitoring is bro-
ken, an attacker can harvest the code page access attempts
inside the SGX enclave at a fine-grained level. Based on more
detailed information of such memory access events, various
information of the running code inside the SGX enclave can
be inferred regardless of the data they are using.
1 Code page fault only occurs when the memory address of the
program counter jumps to another code page.

2 Referred as instruction-granularity fault monitoring.
In general, observing system call information such as their
sequence and parameters can be an effective approach in
order to fingerprint an application’s code identity. However,
SGX applications typically consist of a non-enclave part and
enclave part. Codes running inside the enclave portion usually
process security-sensitive in-memory data without involving
system calls (e.g., cryptographic operation, image processing).
In addition, system call information cannot distinguish be-
tween different build environments (e.g., different compiler
optimization level) of the same software. To mount sophisti-
cated exploits (e.g., involving ROP gadgets), the attacker seeks
detailed information about the target software, including its
detailed software version. In this paper, we assume the side-
channel attack and defense focused to the code page access.

As memory access patterns can be observed from the out-
side world with finer granularity, deterministic memory ac-
cess patterns can be used as a fingerprint for identifying
the exact program version inside the SGX enclave. For ex-
ample, extracted memory access patterns can be compared
to such patterns of previously known programs (enclave ap-
plication and non-enclave applications both). We later show
the experimental results for this deterministic pattern extrac-
tion and comparison . This attack becomes effective as SGX
SDK libraries (and other library codes) are increasingly shared
among developers. We provide more details about this at-
tack in Section 3 and demonstrate the experimental results
in Section 6 .

To address the threat of fine-grained controlled-channel at-
tack (including the VID attack model), we design and imple-
ment SGX-LEGO: a binary conversion framework that adopts
execution polymorphism for SGX applications. The goal of
SGX-LEGO is to remove discernible memory access patterns
(including consecutive access to the same page) while the
code is running inside the enclave. Several techniques can be
considered for removing discernible memory access patterns
inside the SGX enclave. For instance, heavy obfuscation (e.g.,
VM-based obfuscation with added randomness) can be con-
sidered as a solution. However, the SGX environment lacks
dynamic page permission management,3 which is essential
for implementing polymorphic binary. Polymorphic execution
can also be implemented based on RWX

4 memory without
using dynamic page management. However, the use of RWX
memory is discouraged for software security (Frassetto et al.,
2017) 5 .

One of the main contributions of SGX-LEGO is that it
achieves polymorphic execution (thus randomized memory
access pattern) without using dynamic page management or
RWX memory. To satisfy this requirement, SGX-LEGO lever-
ages the concept of code-reuse programming (CRP) 6 tech-
nique. In general, CRP is utilized by attackers to bypass the
DEP enforcement where RWX memory is not allowed. Here,
5 Google Chrome and Microsoft Edge are removing the use of
RWX pages from security-sensitive renderer process using various
techniques.

6 Also known as return-oriented programming (ROP). We use the
term CRP and ROP interchangeably.

120 c o m p u t e r s & s e c u r i t y 8 2 (2 0 1 9) 1 1 8 – 1 3 9

w

S
P
a
d
e

f

S
s

S
L
i
t
n
o

m
t
t

2

2

I
p
l
p
c
p
t
o

t

Table 1 – Intel SGX instructions. The EAX register is
used to point out each specific leaf-instruction. The leaf-
instructions in same mode have the same opcode.

Mnemonic Leaf-Mnemonic Description

(Opcode) (EAX)

Supervisor mode

ECREAE (00) Create an enclave
ENCLS EADD (01) ADD a page
(0F 01 CF) EINIT (02) Initialize an enclave

EEXTEND (06) Extend EPC page

User mode
EGETKEY (01) Create cryptographic key

ENCLU EENTER (02) Enter an enclave
(0F 01 D7) ERESUME (03) Re-enter an enclave

EEXIT (04) Exit an enclave

v
o

w
c
b
w
(
c
c
(

o
s
c
n
p
s

2

T
r
c
t
s
c
c
c
a

b
m
c
i
a
d
d

e use it as a defensive measure against side-channel attack.
GX-LEGO is composed of 1700 lines of C/C++ and 1100 lines of
ython. We explain further in Section 5 . We have implemented

nd evaluated SGX-LEGO in the following environments: Win-
ows 10 Pro 64-bit, Intel i7 SkyLake. Additional details of the
valuation are provided in Section 6 .

The contributions of this paper can be summarized as
ollows.

• The strong(er) attack model . From previous literature, it is
well established that Intel SGX allows attackers to extract
data from the enclave memory using controlled-channel
attack. In this paper, we show the extension of this attack
model and demonstrate that such side channels can also
be used for identifying the code and its detailed version

running inside the SGX enclave memory. We evaluate the
efficacy of the newly proposed VID attack model using the
instruction-granularity page-fault monitoring technique,
which was discovered from previous work (Van Bulck et al.,
2017b).

• The new defense scheme . We leverage the traditional concept
of CRP (which originated from ROP attack) technique to de-
fend the newly introduced attack model. SGX-LEGO auto-
matically converts the given program into small pieces like
LEGO parts (hence, SGX-LEGO), and then generate the poly-
morphic payload

7 to eliminate discernible page access pat-
terns while preserving the semantics of the original input
program. This approach removes deterministic page ac-
cess patterns without involving the use of dynamic page
permission change or RWX memory.

The remainder of this paper is organized as follows.
ection 2 provides the background on the SGX issues and

ide channel attacks. Section 3 explains the VID attack.
ection 4 discuss the design and overall architecture of SGX-
EGO system. Section 5 then explains the details of SGX-LEGO

mplementation and Section 6 shows evaluations of VID at-
acks and SGX-LEGO benchmarks regarding their effective-
ess and performance. Section 7 discusses additional issues
f this paper and limitations of our work. In Section 8 , we enu-
erate various related works and explain the relationship be-

ween such works and this paper. Finally, Section 9 concludes
he paper with a brief summary.

. Background and assumption

.1. Basic background of SGX

ntel SGX is one of a promising technology for the safe com-
uting environment. It provides the extended instruction set

isted in Table 1 to ensure integrity and confidentiality of ap-
lication that has sensitive code and data. It helps the appli-
ation to be executed in a secure container, so-called enclave . It
rotects the application against various kinds of malicious en-
ities (such as kernel privileged malware, or physical attacks)
utside the enclave.
7 In this paper, payload indicates the set of addresses and func-
ion parameters for ROP execution.

t
p
p

The enclave is set up by the operating system that maps the
irtual addresses of the enclave and the physical addresses
f specific memory regions, namely Enclave Page Cache (EPC),
hich is stored in Processor Reserved Memory (PRM). PRM is a

ontiguous subsection of physical memory that is pre-defined

y the BIOS. After initialization, even highest privileged soft-
are such as operating system and Virtual Machine Manager

VMM) cannot acquire any information inside the enclave, ex-
ept the side-channel information like memory mapping and

ache delay time. According to ISCA 2015 technical documents
 Intel, 2015), the code inside SGX binary exists in the form
f plain text before instantiation as it requires runtime mea-
urement via EINIT instruction. Code and data can be first en-
rypted and later decrypted by a key. However, the key should

ever exist inside SGX application. Decryption key must be
rovided from the external network after secure attestation

tep.

.2. Page fault and SGX

he attack model of Intel SGX assumes all the components
equired by an application other than the application binary
ode and CPU; are not trusted (including the operating sys-
em). This is a strong attack model which enables numerous
ide channels to attack the system. One of a well-known side
hannel which enables the attacker to undermine the SGX se-
urity is page-fault based side channel attack . To run an appli-
ation, there are several inevitable operations which require
ssistance from the OS. Page-fault is one of such requirement.

Since the page-table and MMU management is handled

y operating system, the OS can deliberately manipulate the
emory page access permission referenced by SGX appli-

ation.8 The faulting address of page fault potentially leaks
nformation inside the enclave. To prevent this side-channel
ttack, Intel SGX CPU conceals the exact faulting memory ad-
ress and only provides the page number to interrupt han-
ler when such event occurs. More precisely, when the ex-
8 Read/write/exec permission of enclave page is not affected by
he operating system. However, the operating system can cause
age-fault by reducing writable and executable attributes of such

age.

c o m p u t e r s & s e c u r i t y 8 2 (2 0 1 9) 1 1 8 – 1 3 9 121

ecution of SGX enclave is interrupted by an external event,
Asynchronous Enclave Exit (AEX) handler is invoked before
the OS interrupt handler is invoked. While AEX step is pro-
cessed, various information, including lower 12 bits of page
faulting address, are erased before OS can access. Therefore,
the OS cannot know the exact faulting address inside en-
clave memory other than the page number. However, numer-
ous previous works (Schuster et al., 2015; Shinde et al., 2016)
showed that using only page number still can reveal sensitive
information inside the enclave.

2.3. Page access monitoring in SGX

There is a major difference between SGX application and nor-
mal application regarding page access monitoring. In gen-
eral, data memory access and code execution can be moni-
tored by an operating system (using page faults) with single in-
struction granularity whereas no such monitoring granularity is
provided in SGX environment. The reason is that OS must
leverage breakpoints (or instruction traps) to monitor program
behavior per each instruction. For example, consider the fol-
lowing scenario: (i) OS wants to monitor entire memory ac-
cess against data page Page-A . Thus OS first removes access
permission of Page-A . (ii) At some point, a memory access
instruction of SGX application touches data page Page-A and
fault occurs. (iii) OS records the first access attempt against
data page Page-A . (iv) OS gives access permission to Page-A
before resumes the application (unless application hangs). (v)
To catch second memory access attempt against data page
Page-A , OS must remove the access permission of Page-A
again before the next instruction executes. To do so, OS places
software breakpoint (or set trap flag, etc.) at the next instruc-
tion and traps the application again.

From step (v), OS must know the exact faulting instruc-
tion address and also requires memory access permission
(or register access permission) to place breakpoint so OS can
re-adjust page access permission. This procedure is infeasi-
ble under SGX environment as enclave memory is protected
from OS. Therefore, memory access (or instruction execu-
tion) monitoring technique using page fault; significantly dif-
fers between general application and SGX enclave. OS is un-
aware of all events between page faults among different two
pages.

2.4. Code reuse programming

Code Reuse Programming (or return oriented programming) is a
programming method that utilizes the concept of Code Reuse
Attack (CRA) which is a known technique introduced by var-
ious previous works/tools such as Q (Schwartz et al., 2011),
Mona (Team, 2012), ROP Compiler (Stewart and Dedhia, 2015)
and JIT CRA Compiler (Snow et al., 2013). The major difference
between CRP and CRA is that there is no need to find any
gadgets (small code fragment) in CRP as the programmer can
intentionally place any gadget that is necessary to the applica-
tion. We refer to the set of gadgets as gadget corpus in this pa-
per. The gadget corpus is automatically created by taking legacy
binary as an input of SGX-LEGO system. Unlikely to existing
CRA tools, SGX-LEGO adopts randomness to payload genera-
tion to avoid deterministic memory access patterns.
2.5. SGX remote attestation

SGX provides an environment such that enables enclave to ac-
quire sensitive information from trusted sources; this is so-
called remote attestation . To initiate the remote attestation , en-
clave must attest itself to guarantee that every component is
intact. The following is the steps for remote attestation. First,
the enclave calculates its hash and signs with the attestation
key derived from the CPU. The signing information is deliv-
ered to quoting enclave (QE) which is an architectural enclave
included in Intel SGX SDK. QE verifies the message, and if the
message is valid, QE uses EPID private key to sign the message
and send it, called the quote , to the remote verifier. Remote
verifier uses EPID public key to verify the quote . If the chain of
verification succeeds, network channel for communication is
encrypted by the session key made from the remote attesta-
tion and the remote verifier sends sensitive secret information
to the enclave. The cryptographic background of remote attes-
tation is based on SIGMA protocol which is an enhancement
of Diffie–Hellman. We use such remote attestation to securely
receive sensitive control logic of enclave which is consisted of
a ROP payload. Details are explained in Section 4 .

3. Version IDentification attack

SGX environment assumes a fully privileged adversary such
as OS and hypervisor. OS is capable of capturing the page
access event of any application running on top of them.
This configuration allows the fully privileged attacker to in-
spect the memory access pattern of SGX enclave. SGX pre-
vents such information gathering attack by masking off the
offset information of page fault event at a hardware level.
For example, if a page fault occurs at memory address
0x07654321 where the memory page is 4Kbytes, the hard-
ware signals the OS and gives the address 0x07654000 which
is an address that the page offset information is removed.
Additionally, Section 2 explained page fault monitoring
against SGX application is coarse-grained as the per-
instruction trap is inapplicable. Therefore, the execution of
SGX application only results in a sequence of accessed page
numbers. Although the same page is consecutively accessed
multiple times (by multiple instructions), only the first access
can be observed from outside.

However, according to the recent work on SGX controlled-
channel attack (Van Bulck et al., 2017a; 2017b), multiple execu-
tions of instructions (or memory access attempts) inside the
same page can be distinguished by an attacker. Given that the
number of instructions executed inside the same page can be
counted due to finer-grained page fault monitoring, it is possi-
ble to generate discernible code execution pattern using page
access trace. Fig. 1 describes the per-instruction counted page
access patterns.

Without the capability of instruction counting, page fault
information of Fig. 1 would be observed as P1-P3-P2 . How-
ever, assuming each instruction inside the same page raises
distinguishable faults, the observed fault information would
become P1-P1-P1-P3-P3-P3-P2-P2-P2-P2 which is more
detailed than the previous version. Based on such develop-
ment, we show that it is possible to identify codes and their

122 c o m p u t e r s & s e c u r i t y 8 2 (2 0 1 9) 1 1 8 – 1 3 9

Fig. 1 – Instruction granularity page fault monitoring.

Fig. 2 – Fine-grained page access pattern of AES-GCM code in Windows SGX SDK. X -axis is number of executed instructions
and Y -axis is address of faulting code page while executing the instruction.

d
t
m
s

T
c
b
s

p
n

t
c
d
m
a
e
u
e

T
t
s

etailed information inside unknown SGX enclave. According
o our experiments, instruction-granularity page fault infor-

ation (which includes a number of repeated access to the
ame page) can reveal the identity of code inside SGX enclave.
his is done by gathering enclave page access patterns and

omparing them with a previously known set of patterns. This
ecomes particularly effective in case the SGX enclave uses a
tandard public library such as SGX SDK.

Fig. 2 is the result of gathering the exact addresses of 1400-
age faults occurred by each code execution from an ordi-
ary cryptographic application program. The x -axis indicates
he number of instructions executed (each execution causes
ode page fault) and Y -axis indicates the faulting page ad-
ress. Although we take into account that page-offset infor-
ation is removed from SGX environment, the (page masked)

ddress information still leaves access pattern based on its
xecution path. From the page access pattern result, contin-
ous execution mostly occurs within the same page. How-
ver, functions are usually composed of multiple subroutines.
he codes of each subroutine are likely to have distance more

han one page. Also, so far, the page access patterns within

ame code page yielded only one-page fault no matter how

c o m p u t e r s & s e c u r i t y 8 2 (2 0 1 9) 1 1 8 – 1 3 9 123

Fig. 3 – VID attack process overview.

many instructions were executed. However, given that the
page faults raised by each instruction within the same page
can be counted, we have an additional dimension of page ac-
cess pattern graph, which is the length of X -axis. Comparing
the similarity of such patterns with a known set of pattern
database can reveal the detailed identity of code inside SGX
enclave. We refer this code disclosure attack against SGX as
Version IDentification (VID) attack.

The overall procedure of VID attack can be depicted as
Fig. 3 . First, we setup a database of universally known pat-
terns from public SGX SDK libraries (i.e., SDK versions 1.x).
The database should include page access pattern information
of various algorithms of libraries. Using page access pattern
database of publicly known library functions, we can deduce
which algorithms are being used inside unknown SGX enclave
by extracting its fine-grained page access pattern and finding
the pattern match from a database. We demonstrate actual
result in Section 6 using cryptographic functions of SGX SDK
library.

4. SGX-LEGO

To harden the SGX from fine-grained controlled-channel at-
tack, we propose SGX-LEGO, a binary conversion framework
for removing discernible patterns of code execution. The sim-
plest way for eliminating deterministic execution pattern is
using polymorphic code.9 However, making polymorphic code
requires dynamic generation of the executable page at run-
time or RWX pages. Unfortunately, dynamic alteration of page
permission is disallowed in early SGX hardware; and using
RWX page is discouraged

10 regarding security as it violates
DEP enforcement.

To achieve polymorphism without involving any dynamic
change of page permissions nor the use of RWX memory,
9 Code fragment that changes its form at runtime while preserv-
ing the execution semantic of overall algorithm.
10 To quote Intel SGX manual, “The ideal enclave would also have

a defense-in-depth mechanism that ensured that all sections con-
taining executable code would also be non-writable.”

SGX-LEGO leverages ROP attack mechanism. In software vul-
nerability exploitation, ROP attack is leveraged to bypass the
DEP enforcement where RWX memory is unavailable. The in-
sight here is that, if we use the concept of ROP, execution poly-
morphism can be implemented without involving dynamic
page permission changes nor RWX memory. To launch ROP
attack, attacker stitches a proper sequence of existing gadget
codes and ultimately achieves semantically malicious overall
execution. The sequence and address information of gadgets
are stored as payload (information that determines execution
order) which is pure data that only requires readable-writable
memory. Thus adopting polymorphism against ROP-style exe-
cution with payload do not involve any requirement of dynam-
ically assigned executable memory. The procedure of convert-
ing existing code into ROP-style payload is fully automated,
and we add polymorphism to ROP execution for eliminating
deterministic patterns that can be used for pattern analysis.

In short, SGX-LEGO disassembles the given binary and au-
tomatically generates a minimal pool of small code fragments
(ROP gadgets) and a data sequence of their execution (ROP
payload). Automatic generation of ROP attack payload was
demonstrated by previous work Q (Schwartz et al., 2011). How-
ever the goal of Q is generating payload against given binary
for attack purpose thus there is no issue of (i) minimal gadget
pool generation, (ii) adopting execution polymorphism, and
(iii) performance. SGX-LEGO performs optimized gadget gen-
eration and adopts polymorphism to automatically generated
payload for defense purpose. We show a detailed comparison
between SGX-LEGO and Q in Section 8 . Fig. 4 illustrates the
overall design of SGX-LEGO framework.

SGX-LEGO is composed of a local and remote system. Gad-
gets inside local application use constant number of readable-
executable but non-writable pages . However, the payload for
execution is generated from the remote system. Once the
local system initiates, standard SGX remote-attestation is pro-
cessed, and the remote system generates polymorphic pay-
load and transfers it to the local system. Payload generation
and transfer are divided into multiple times in case the pro-
gram is too big thus the stack or heap size of the local system
is insufficient to hold the entire payload for execution. SGX-
LEGO assumes that gadget codes for ROP-style programming
is not secret information, but considers the payload as secret.

To achieve execution polymorphism, SGX-LEGO uses fol-
lowing strategies: (i) distribute gadgets depending on their ac-
cess frequency and make the page access to be evenly dis-
tributed, also place multiple gadgets at different locations that
are semantically-equivalent with each other and choose it
randomly while payload generation. (ii) Apply randomness
to stack payload positioning thus change the stack payload
layout and randomize its page access patterns. Using such
methods, the execution sequence and memory access pat-
terns of gadgets (codes) and payload (stack) are random-
ized. However, this methodology still leaves memory access
to data pages such as BSS segment and heap to be deter-
ministic. The current version of SGX-LEGO implementation
does not consider data memory access randomization. Previ-
ous works (Goldreich and Ostrovsky, 1996; Ren et al., 2015; Ste-
fanov et al., 2013) addressed this issue. The main focus of SGX-
LEGO is to protect the identity of code information inside SGX
enclave.

124 c o m p u t e r s & s e c u r i t y 8 2 (2 0 1 9) 1 1 8 – 1 3 9

Fig. 4 – Overall design of SGX-LEGO system.

4

O
a
n
c
i
e
n
d
p
i
i
g
a
p

(
a
p
e

F
p
b
t
p
a
t
g
L
t
t

g
s
g

Fig. 5 – Evenly distributed gadgets in SGX-LEGO. Each block

represents a gadget and the brightness of the block implies
the access frequency.

d
s
t

d
q
g
i
g
g
l
c
p

.1. Non deterministic gadget access

ne advantage of using ROP-style execution is that the
mount of code can be reduced compared to the original bi-
ary. For example, SGX-LEGO reduced the required amount of
ode pages of simple crypto application down to 30% by adopt-
ng ROP-style execution. If an application is tiny enough, the
ntire set of gadgets (generated from the original input bi-
ary) can fit into a single memory page. In such a case, the
iscernible pattern cannot exist regardless of the execution

ath. In such a case, SGX-LEGO does not adopt any random-
zation as there is no pattern other than constantly access-
ng the same page. However, in reality, the amount of required

adgets to run an application easily exceeds the boundary of
 single page. Therefore depending on the execution path, the
age access sequence becomes distinctive and recognizable.

In case the pages required for gadgets are more than one
which is the general case), SGX-LEGO eliminates discernible
ccess patterns by applying even distribution policy and a du-
licate set of gadgets . Even distribution prevents inferring the
xistence of frequently used gadgets inside a particular page.
or example, if page A contains frequently used gadgets and

age B contains rarely used gadgets, page access pattern will
e weighted to A . To prevent such a result, SGX-LEGO considers
he access frequency of each gadget. Even distribution policy
re-defines the access frequency of each gadget (in average)
nd place them accordingly to distribute the page access at-
empts evenly. If binary is composed with two frequently used

adgets mov / jmp and two rarely used gadgets les / halt , SGX-
EGO will group mov and les into same page (assuming only
wo gadgets can fit into single page for simplicity of explana-
ion) then place jmp and halt into another page.

SGX-LEGO also considers the repeated use of the same gad-
et. To avoid distinctive access patterns due to excessive use of
pecific gadget, SGX-LEGO places semantically duplicate gad-
ets on multiple pages so that payload can randomly select
ifferent gadgets even if the execution is repeated. Fig. 5 is
implified illustration of SGX-LEGO gadget access randomiza-
ion. In Fig. 5 , each block indicates gadget and the color in-
icate their access frequency (dark color indicates more fre-
uently used gadget). The left side of the figure is required

adgets for program execution. In case all gadgets cannot fit
nto the single page, SGX-LEGO evenly distributes such gad-
ets considering their access frequency; and places duplicate
adgets for frequently accessed gadgets and make the pay-
oad to randomly choose the necessary gadgets from multiple
andidates of possible pages. By increasing the number of du-
licate gadget codes among different pages, the randomness

c o m p u t e r s & s e c u r i t y 8 2 (2 0 1 9) 1 1 8 – 1 3 9 125

Fig. 6 – SGX-LEGO system overview.

entropy of gadget page access pattern increases, however,
overly extensive use of duplicate gadgets will waste memory
usage.

4.2. Non deterministic payload access

The fit-into-single-page situation from the previous subsection
is also applied to payload page (stack for ROP execution) ran-
domization. If the payload for program execution is tiny, the
entire payload can fit into single data page thus avoid any dis-
cernible page access pattern. However, such an ideal situation
is unlikely. SGX-LEGO applies randomness to payload page ac-
cess patterns by randomizing the payload location with stack
pivoting techniques and reordering semantically equivalent
gadget execution. The key point of payload page randomiza-
tion leverages the fact that the content and order of payload
are semantically equivalent to executable codes however its
memory access property does not require executable permis-
sion. Therefore, we can adopt execution polymorphism with
statically given readable-writable pages only.

5. Implementation

In this section, we discuss various components that imple-
ment SGX-LEGO system. SGX-LEGO is implemented using
C/C++ and Python language. The CPU architecture is assumed
to be 32bit × 86. SGX-LEGO is primarily composed of the fol-
lowings: (i) Disassembly Module, (ii) Gadget Generation Mod-
ule and (iii) Remote System. Fig. 6 summarizes the implemen-
tation components and their execution steps.

In order to obtain assembly codes as the input for SGX-
LEGO system, we use existing disassemblers such as IDA
Pro (Eagle, 2011), Hopper (Benony, 2017), Dyninst (Bernat and
Miller, 2011). The current implementation of SGX-LEGO is
based on IDA Pro. The Disassembly Module is a wrapper of
IDA Pro disassembly engine that automates the extraction
of assembly codes into the proper format used by Gadget
Generation Module. While extracting the assembly codes, ad-
dress map information regarding all necessary binary sym-
bols is also obtained. Therefore SGX-LEGO does not consider
symbolization problem as other reassembly works (Wang
et al., 2017a).

The Gadget Generation Module receives assembly codes as
input and generates executable code segments that will be
used by payload which executes semantically equivalent orig-
inal code. We refer to the set of generated ROP gadgets as gad-
get corpus . The generation of gadget corpus is fully automated.

Gadget Generation Module first separates the code seg-
ment into non-control-flow related instructions and control-
flow related instructions. Each of the original instructions is
converted into the corresponding set of gadgets and payload
for controlling its execution flow. To avoid one gadget affecting
another gadget’s execution context, register context should be
saved and restored back each time when a gadget is executed.
Also, some control flow instructions are affected by EFLAGS
register content, and EIP register value. These instructions
need to be carefully considered while instrumenting them for
SGX-LEGO, which uses ESP register for controlling the execu-
tion flow. In addition, side-channel related instructions (e.g.,
CMOVcc, SETcc) are handled as exceptions and not trans-
formed other sets of semantically equivalent instructions.

The second operation is making the payload generator
code for the remote system. The payload generator code will
be used after SGX remote attestation step. The payload gen-
erator of the remote system dynamically creates the payload
using the base address information of loaded gadget corpus
as meta-data. After a small set of instructions are catego-
rized and transformed into ROP-gadgets, randomization, and
reordering steps are finally applied at the end of gadget gen-
eration procedure.

After gadget generation, SGX-LEGO generates proper pay-
load to execute gadgets. This process is depicted in Fig. 7 . In
case of the branch instructions, SGX-LEGO converts the off-
sets between codes into offset between payloads. For exam-
ple, payload[137] in the figure stores 3 which is a ROP pay-
load distance between payloads for proper gadgets. In case of
the payload[189] , the 0xfeedbeef will be replaced with
return address at runtime.

Initially, enclave saves the payload into heap memory
(which will be later used as a stack) and pivots the stack

126 c o m p u t e r s & s e c u r i t y 8 2 (2 0 1 9) 1 1 8 – 1 3 9

Fig. 7 – Example code snippets for SGX-LEGO transformation. Upper side is the case for JMP, lower part is the case for CALL.
Left side of the figure is the original code before SGX-LEGO transformation. Right side of the figure is the automatically

generated code for payload generation.

p
i
c
C
b
g
a
p
p
t

f
t

H
i
p
t
t
p
v

m
u
a

A
a

A
r
r
m
p
t
c
t

t
t
p

e
p

ointer to point the start address of payload. The payload

s composed of gadget addresses to be executed in pre-
alculated order and parameters of some gadgets such as
ALL and JMP . Once SGX-LEGO reduces the required num-
er of code pages by adopting ROP-style execution, duplicate
adgets (for randomization) are added therefore the overall
mount of code page remains similar to the original input
rogram. According to our analysis, an average gadget is com-
osed of approximately 7 bytes, therefore a single page con-
ains 580 gadgets on average.

SGX-LEGO instruments the original instructions in the
orm of gadgets and corresponding payloads. The instrumen-
ation requires the temporal use of general purpose registers.
owever, the instrumentation must guarantee all the register

nformation to avoid clobbering; unless the correctness of the
rogram breaks. For example, we need to carefully consider
he side effects of arithmetic operation as it implicitly changes
he EFLAGS register state. Also, all the register values must be
roperly saved and restored while the instrumentation to pre-
ent register clobbering.
Traditional compilers handle this issue by using the stack
emory for temporal storage for registers. However, we avoid

sing such methodology as it involves discernible stack page
ccess pattern that we aim to eliminate from the first place.
s a solution, we use MM0–MM7 registers for temporary stor-
ge in general circumstances where such registers are unused.
s well as MMX registers, other unused registers such as SSE

egisters can be used as an alternative. Unfortunately, if all
egisters (MMX, SSE, etc.) are busy, SGX-LEGO is forced to use

emory as temporary storage. Admittedly, this method is only
lausible under the assumption that instrumented applica-
ion does not use any of such registers. In case the original
ode fragment uses such registers, SGX-LEGO should reluc-
antly use memory space for saving register context. However,
he current version of SGX-LEGO is only applicable to codes
hat do not use such registers; which is a limitation at this
oint.

Simple instructions which are independent of a various
xecution context are easy to instrument. The challenging
art is handling instructions which are highly dependent on

c o m p u t e r s & s e c u r i t y 8 2 (2 0 1 9) 1 1 8 – 1 3 9 127

Listing 1 – Conditional branch gadget generation example.

11 During experiments; we noticed that ECDSA yields slightly dif-
ferent execution pattern depending on the input contents.
context information such as conditional move or conditional
jumps and indirect calls. Maintaining the register context
(EFLAGS and others) to be intact is a matter of performance
overhead, however, preserving the semantics of control flow
transition requires special techniques. Listing 1 is a code frag-
ment example of indirect jump (for if statement) conversion.
SGX-LEGO calculates the distance of payload from the indirect
jump relative offset (ECX) and holds such information with
EAX . The cmp which affects EFLAGS is substituted with cmovz
and the binary result (1 or 0) is multiplied to pre-calculated
payload offset number inside EAX . In case the cmovz yields
zero, the branch will not be taken.

To adopt polymorphism, we use a special type of gadget
so-called hub gadget . This gadget is randomly used during
the original semantic of code execution. The hub gadget uses
rdrand instruction which is provided by Intel for obtaining
true randomness inside SGX enclaves. With random number
provided by rdrand , hub gadget imposes various randomiza-
tion procedures to add random noises in code/payload page
access patterns. The intensity of randomly generated noise is
configurable by user. To minimize discernible access patterns
of hub gadget, we use JMP instruction rather than RET (which
requires additional stack page access) for deterministic con-
trol flow branch.

The frequency of invoking the hub gadget decides the
effectiveness of security and performance overhead. If the
frequency of hub gadget execution is rare, the performance
penalty is minimized yet the effectiveness of pattern elimina-
tion is weak. On the contrary, overly frequent execution of hub
gadget effectively eliminates discernible page access patterns,
yet requires a high-performance penalty. We discuss the de-
tails of performance penalties in Section 6 .

6. Evaluation

Evaluation in this paper is based on the following environ-
ments: Windows 10, Visual Studio 2012 (for SGX SDK 1.1),
and Visual Studio 2013 (for SGX SDK 1.7), Windows SGX SDK
version 1.1, 1.7 and Linux SGX SDK. For generating memory
access patterns and its visualization, we use SGX emulation
mode provided by Visual Studio and a customized version of
open source binary execution visualization tool (CODEMAP) .

6.1. VID attack

The goal of VID attack is to distinguish and identify the code
running inside SGX enclave memory by analyzing its page ac-
cess patterns in fine-grained level. If the observed execution
pattern has high similarity with the previously known pattern,
an attacker can infer the code is running inside the enclave.
Because cryptographic algorithms are designed to show ex-
actly same execution pattern regardless of data/key contents
(length matters), the fine-grained page access pattern will be
a strong signature for identifying the code information.11 It is
obvious that page access pattern of different algorithms (e.g.,
Blowfish and RSA) would be different. However, the question
is: How much difference can we tell, given that the granular-
ity of previous SGX controlled-channel is reduced? Can we tell
the difference between the same algorithm but using a differ-
ent library version? In case of a cryptographic algorithm, can
we tell the difference of its build configurations, encryption
modes by looking into its code page access patterns? In this
section, we answer such questions.

The overall VID attack evaluation indicates that it is feasi-
ble to identify the code version information inside SGX en-
clave by analyzing the page access patterns. Fig. 8 shows
the execution pattern of two applications that implements
the same algorithm (AES-GCM) but using a different version
of SGX SDK (Windows and Linux). Each of the execution
leaves same code page access pattern repeatedly thus mak-
ing uniquely discernible pattern even under the presence of
current ASLR applied inside the enclave.

Even though an application implements identical func-
tionality, we can observe that the fine-grained page access
pattern changes drastically depending on various parameters
such as Library types (e.g., OpenSSL, SGX SDK, etc.), minor
software version, algorithm modes, build configuration (e.g.,
optimization level). Based on our experiments, we observed
some variation of fine-grained execution pattern between dif-
ferent SDK versions and cryptographic algorithm modes. For
changes in minor version and crypto modes, pattern differ-
ences were minimal. We conducted various experiments to
see the differences in page access patterns of cryptographic al-
gorithm depending on its minor version and operation modes.
Fig. 9 (a) is the result of using Windows SDK version 1.1, and
Fig. 9 (b) shows the pattern result of SDK version 1.7. Fig. 9 (c)
is result of MD5 operation and Fig. 9 (d) shows the result of
SHA1 both in Windows 10 bcrypt library. Overall, the patterns
are identical in major portion, however, there are some por-
tions with a subtle difference as well. Fig. 10 shows the differ-
ence between AES-GCM and AES-CTR modes. As shown in the
figure, changing the mode affects the fine-grained execution
pattern. However the modified portion is small. If the attacker
can compare the specific clean signatures, it would be enough

128 c o m p u t e r s & s e c u r i t y 8 2 (2 0 1 9) 1 1 8 – 1 3 9

Fig. 8 – VID attack for distinguishing the Windows SGX Library (upper side graph) and Linux SGX Library (bottom side
graph) version of AES implementation. The graph shows partial execution (initial 400 instructions). X -axis is number of
executed instructions and Y -axis is address of accessed code page while executing the instruction. In the experiments,
AESNI instruction was not used.

c o m p u t e r s & s e c u r i t y 8 2 (2 0 1 9) 1 1 8 – 1 3 9 129

Fig. 9 – Page access pattern (offset is masked) of various cryptographic operations. X -axis is number of executed instructions
and Y -axis is address of accessed code page while executing the instruction. a Minor difference between SGX SDK 1.1 and

1.7 is due to trivial code updates.
a AES encryption keys and input data do not affect execution pattern.

to distinguish the detailed version. In case the attacker com-
pares the overall similarity considering added noises, it would
be difficult to tell such information.

In case the underlying implementation library is differ-
ent, we can observe a significant difference in execution pat-
tern. Fig. 11 shows the page access patterns while executing
AES in four different libraries. Fig. 11 (a) is the result of SGX
SDK 1.1, Fig. 11 (b) is the result of Windows Crypt32 library,
Fig. 11 (c) is the case of Windows OpenSSL 1.1, and Fig. 11 (d)
is the result of TinyAES. In this case, we can observe that ex-
ecution patterns are vastly different thus can be served as a
unique pattern signature for identifying the code. With these
pattern information, even considering some noises, an at-
tacker can compare the similarity of the execution pattern
and conclude the exact type of AES implementation with high
confidence.
We also tested how the compiler optimization affects the
fine-grained execution pattern. Fig. 12 are the experiment re-
sults of extracting the pattern of TinyAES library code with dif-
ferent compiler optimization flags. Fig. 12 (a) shows the access
pattern of TinyAES build with Od (no optimization) . Fig. 12 (b)
and (c) is the result of using O1 (minimum code size), O2 (maxi-
mum speed) flags during the source code compilation. Fig. 13
is the optimization test result of Linux SGX SDK AES-GCM
library code. We analyzed the output binary and confirmed
that optimization reduced the number of codes thus placing
some of the algorithm-relevant codes into different pages. In
the case of TinyAES, because the binary was small, optimiza-
tion reduced the entire code base to fit into a single page thus
eliminating any observable page access pattern. In addition
to the compiler optimization for code generation, we also in-
vestigated linker optimization and measured the difference in

130 c o m p u t e r s & s e c u r i t y 8 2 (2 0 1 9) 1 1 8 – 1 3 9

Fig. 10 – Fine-grained page access pattern of AES implementation that uses the same version of SGX SDK, but different
configuration. Two graphs are showing patterns with different subtle changes. The x -axis is number of executed

instructions and Y -axis is the address of accessed code page while executing the instruction.

Fig. 11 – Page access pattern (offset is masked) of AES encryption and decryption in various libraries. X -axis is number of
executed instructions and Y -axis is address of accessed code page while executing the instruction. a
a Unlike Y -axis numbers, the graph representation is based on page-masked addresses.

c o m p u t e r s & s e c u r i t y 8 2 (2 0 1 9) 1 1 8 – 1 3 9 131

Fig. 12 – Page access pattern (offset is masked) of TinyAES code depending on various compiler optimization flags. X -axis is
number of executed instructions and Y -axis is address of accessed code page while executing the instruction.

page access pattern. However, linker optimization did not re-
sult in any measurable difference.

In summary, fine-grained page access patterns can be
served as a signature for identifying the code inside an en-
clave. The similarity of patterns were significantly changed in
case (i) the type of implementation library (e.g., OpenSSL and
Crypt32) are different, and (ii) compiler optimization level is
different. The change in patterns was small in case (i) minor
library version is different (e.g., SDK 1.1, SDK 1.7), and (ii) cryp-
tographic algorithm uses different internal modes (e.g., CBC,
ECB, GCM).

6.2. SGX-LEGO

In this subsection, we demonstrate the fine-grained page ac-
cess patterns before and after we adopt SGX-LEGO. To evaluate
the performance of SGX-LEGO transformation, we use four ap-
plications that implement AES-GCM, AES-CTR, SHA256, and
ECDSA. Fig. 14 (a) is the evaluation result of AES-GCM. The
most left side of the figure Fig. 14 (a) is the original page
access pattern, the center figure is after transforming the
program with SGX-LEGO without running even-distribution
process, and the right side of the figure is the result of
SGX-LEGO transformation with gadget relocation process for
even-distribution. Additional figures Fig. 14 (b)–(d) are the
same evaluation result using AES-CTR, SHA256, and ECDSA
applications. All of the original page access patterns are
measured by running Linux SGX SDK codes compiled with
default build options. In the case of AES-GCM and AES-CTR,
SGX-LEGO places all the necessary gadgets into three pages.
Because SGX-LEGO evenly-distributes the gadgets into mul-
tiple pages, an attacker cannot easily identify any signature
patterns. In case the transformed code size is small enough
(ECDSA, SHA256 case), SGX-LEGO puts entire gadgets inside
a single page, thus eliminating any discernible fine-grained
page access patterns. Our evaluation results do not reflect ex-
ecutions outside the enclave (e.g., EEXIT and EENTER via an
interrupt).

SGX-LEGO also evenly-distributes payload contents to hide
access patterns in payload pages. Unlike the gadget distribu-
tion process, payload access distribution is challenging to dis-
tribute perfectly evenly. The current solution for hiding the
payload access pattern is relatively simple compared to han-
dling code pages. Therefore, the payload access normaliza-
tion in ROP payload still leaves some patterns depending on
the application. To overcome this limitation, we implemented
a feature that makes dummy access between standard pay-
load accesses to normalize the payload page access frequency.
In this manner, we can thoroughly eliminate ROP payload
access pattern; however it increases performance overhead
up to × 600 in the worst case. SGX-LEGO currently imple-
ments this feature; however we do not enable it by default
due to high cost. From attacker’s perspective, it would be
straightforward to observe the code page access pattern than
ROP payload pages which would be mixed with other data
pages of heap. Table 2 summarized the number of code and

132 c o m p u t e r s & s e c u r i t y 8 2 (2 0 1 9) 1 1 8 – 1 3 9

Fig. 13 – Fine-grained page fault pattern of Linux SGX SDK

AES-GCM code with various build optimization.

Table 2 – Number of code/data pages before/after SGX-
LEGO transformation. Only execution-related pages are
counted. SGX-LEGO transformation reduced code pages
and increased data pages.

Algorithm # Code
page (R-X)

Data
page (RW-)

Program

version

AES-GCM 13 6 Original
AES-CTR 7 6 Original
SHA256 2 2 Original
ECDSA 12 3 Original
AES-GCM 3 11 SGX-LEGO

AES-CTR 3 9 SGX-LEGO

SHA256 1 2 SGX-LEGO

ECDSA 1 6 SGX-LEGO

Table 3 – Number of instructions before/after transform-
ing the code with SGX-LEGO.

Algorithm w/o SGX-LEGO w/ SGX-LEGO Overhead

AES-GCM 192,042 858,627 × 4.471
AES-CTR 51,261 199,645 × 3.894
SHA256 21,316 54,960 × 2.570
ECDSA 99,967,248 328,119,294 × 3.282

Table 4 – Performance impact of SGX-LEGO transforma-
tion. Numbers are the elapsed clock cycle count measured

with RDTSC.

Algorithm w/o SGX-LEGO w/ SGX-LEGO Overhead

AES-GCM 110,019 1,756,419 × 15.96
AES-CTR 25,714 430,495 × 16.74
SHA256 9316 192,364 × 20.88
ECDSA 56,770,592 806,265,302 × 14.20

d
d
a

m
(

i
L
t

T
G
b
p
×

o
n
a
e
h

t

ata pages before and after applying SGX-LEGO. SGX-LEGO re-
uces the overall number of pages required to execute the
pplication.

After evaluating the security effectiveness of SGX-LEGO, we
easured the performance overhead. We used Intel PIN tool

 Luk et al., 2005) to accurately count the number of executed
nstructions before/after transforming the binary with SGX-
EGO. In average, SGX-LEGO increased the number of instruc-
ions approximately three times more than the original code.
able 3 is the result that shows increased numbers of AES-
CM, AES-CTR, SHA256, and ECDSA codes in Linux SGX SDK li-
rary 12 due to SGX-LEGO transformation. However, the overall
erformance overhead of SGX-LEGO showed approximately
16 overhead as shown in Table 4 . Table 5 is the summary

f SGX-LEGO performance overhead evaluation. The increased

umber of executed instructions were about × 3. However the
ctual performance of SGX-LEGO shows about × 16 increase
xecution in time. We further inspected the reason for such

igh overhead and find out that SGX-LEGO transformation re-
12 The input message used for each algorithm is ‘‘this is
he plain text’’.

c o m p u t e r s & s e c u r i t y 8 2 (2 0 1 9) 1 1 8 – 1 3 9 133

Fig. 14 – SGX-LEGO evaluation results. The x -axis is the number of executed instructions and Y -axis is the address of
accessed code page while executing the instruction. The left side image is the original pattern. The center image is after
applying SGX-LEGO w/o gadget relocation process. The right side image is after applying SGX-LEGO w/ gadget relocation

process. The codes are from Linux SGX SDK library.

134 c o m p u t e r s & s e c u r i t y 8 2 (2 0 1 9) 1 1 8 – 1 3 9

Fig. 15 – Performance overview of SGX-LEGO.

Table 5 – Performance overhead analysis of SGX-LEGO.
CPI stands for cycles per instruction. IPC stands for in-
structions per cycle.

Algorithm # of instructions # of clocks CPI IPC

AES-GCM (original) 192,042 110,019 0.57 1.7
AES-CTR (original) 51,261 25,714 0.5 2.0
SHA256 (original) 21,316 9213 0.43 2.3
ECDSA (original) 99,967,248 56,770,692 0.6 1.8
AES-GCM (SGX-LEGO) 858,627 1,756,419 2.0 0.5
AES-CTR (SGX-LEGO) 199,645 430,495 2.2 0.5
SHA256 (SGX-LEGO) 54,960 192,364 3.5 0.3
ECDSA (SGX-LEGO) 328,119,294 806,265,302 2.5 0.4

d
t

n
m
S
m
u
e
‘
s
b
o

S
a
a
e
c
s

S
v

g
c
c
l
t
a
a

A
t
e

7

7

R
t
w

2

(
b

a
Q
o
i
e

S
T
a
S
i

T
a
t
fi

uced the CPU cache and pipeline utilization, thus decreased

he Instruction Per Cycle (IPC) throughput.
Due to SGX-LEGO transformation, code cache hit rate sig-

ificantly drops as the code turned into gadgets spread over
ultiple cache line. This is one of a major factor that affects

GX-LEGO performance (Elsabagh et al., 2017). Also, due to the
assive use of branches (return), CPU pipeline cannot be fully

tilized. In modern CPU pipeline architecture, out-of-order ex-
cution and parallelism maximize the IPC throughput thus
‘IPC bigger than 1’’ is commonly observed (Skylake
hows IPC = 5 in optimal condition). However, massive use of
ranch instructions inserted by SGX-LEGO hinders the out-of-
rder execution thus lowers the IPC throughput. As a result,
GX-LEGO imposes × 10 to × 20 execution slowdown in aver-
ge Fig. 15 . Although there is high-performance overhead, we
rgue that SGX-LEGO is only required for a small portion of the
ntire application. SGX enclave is designed to place a security-
ritical portion of code such as cryptographic processing or
ecurity credential checks.

Overall, the evaluation suggests that newly emerging
GX side channel attack technique allows attackers to in-
estigate enclave page access patterns with per-instruction
ranularity, and this makes our VID attack feasible and practi-
al. Our evaluation regarding VID attack reports that attacker
an reliably distinguish the running algorithm and its major
ibrary versions with code optimization level. In case the at-
acker can precisely collect the page access patterns without
ny noises, she can further speculate the minor library version

nd detailed cryptographic parameters used by the algorithm.
lthough with high-performance overhead, SGX-LEGO effec-

ively eliminates such side-channel attacks under SGX spec1
nvironment.

. Discussion and limitation

.1. Automatic ROP payload generation

OP is a popular exploit technique used to bypass DEP. Au-
omation of ROP is an old topic discussed by many previous
orks (Davi et al., 2014; Schwartz et al., 2011; Snow et al.,

013; Stewart and Dedhia, 2015; Team, 2012). Schwartz et al.
2011) presented Q , an automatic ROP payload generator for
inary exploit. Their system takes in an attack target binary,
nd an exploit program written in a high-level language called

ooL. Q then finds appropriate gadgets and makes ROP chain

ut of them. Since ASLR moves most of the code to random-
zed locations, their solution focuses on semantic analysis to
xtract gadgets from small amounts of unrandomized code.
imilar tools (Snow et al., 2013; Stewart and Dedhia, 2015;
eam, 2012) also try to find ROP exploits from given binary
nd attack specification. Some approaches (Davi et al., 2014;
chwartz et al., 2011) aim to harden existing exploit code us-

ng discovered ROP gadgets.
Previous works for ROP automation is focused on attack.

hus ROP automation is aimed at executing a simple piece of
ttack code. The attack code is typically written in either cus-
om high-level language or real exploit, both of which are dif-
cult to convert from existing program. In this paper, we made

c o m p u t e r s & s e c u r i t y 8 2 (2 0 1 9) 1 1 8 – 1 3 9 135

an advanced framework which is suited for complete execu-
tion of the compiled program in ROP style. Our framework
does not require gadget discovery as we generate both gad-
gets and ROP payload. Rather, SGX-LEGO is more focused on
generating minimal gadgets which can execute complicated
logic such as recursions, and randomize their distributions to
hide access patterns.

7.2. Branch information leakage attack

According to other SGX side channel attack researches (Lee
et al., 2017b), branch information leakage is used as another side
channel to retrieve the branch event history of the enclave.
SGX-LEGO could be more resistant to such side channel at-
tack as indirect branch instructions are transformed into stack
pivoting operation which does not involve any branch instruc-
tions. For example, the indirect jump will be ultimately trans-
formed into stack addition (or subtraction) operation; there-
fore, SGX-LEGO transformed binaries will reduce the original
branch events.

7.3. Gadget reusability

While converting the input binary into ROP-style gadgets,
we found that the number of executed gadgets are heav-
ily weighted towards a particular set of frequently used
instructions. In detail, top 5% of gadgets have more than
50% portion of executed instructions. The most frequently
used instructions are branch instructions such as CALL or
JMP . Second frequently used instructions are register to
memory, memory to register data transfer instructions.
Third frequently used operations are arithmetic operations
such as ADD , or SUB . Other types of instructions were rarely
used. SGX-LEGO leverages such statistical information to op-
timize the randomization of code page access. For exam-
ple, placing duplicate instruction into multiple pages can be
selectively adopted against frequently used instructions for
reducing overall code page number.

7.4. Accuracy of VID

The discussion of this paper is based on the assumption in
which the side channel attacker can count the number of
executed instructions within the same page. This assump-
tion stems from the technique is shown by Van Bulck et al.
(2017a,b) . However, the accuracy of such instruction counting
could be unreliable depending on the instruction types. There-
fore the VID attack discussed in this paper does not guarantee
the identification with absolute certainty. The comparison be-
tween patterns and inference provides probabilistic informa-
tion based on the pattern similarity, which is a limitation of
the VID attack.

7.5. Optimization

Compiler optimization affects the code emission process thus
can change the code page access pattern. In our evaluation, we
also considered various optimizations for different builds. We
observed significant changes in code page access patterns in
case the application was small. In case the application code
base was big, the impact of code optimization to page ac-
cess pattern was relatively small. We also considered the link-
time optimization affecting the code page access patterns. To
evaluated this by changing the Visual Studio build options
(/LTCG, /GL flags) of Windows SGX SDK. However, we could
not measure any difference from the execution pattern.

7.6. VM obfuscation

Virtual Machine based obfuscation (VM-obfuscation) is one of
an effective obfuscation technique that diverts static and dy-
namic analysis. To obfuscate the binary, VM-obfuscation splits
the program logic into small pieces and implement them as a
virtual function. With such virtual functions, VM-obfuscation
creates an additional software execution layer with bytecodes
which will tell the VM how to stitch the functions and execute
the binary. This concept can be easily observed in the com-
mercial software market (e.g., Java, ActionScript, Python, etc.)
for providing better compatibility with underlying platforms.
Such VM-based programming languages provide the bytecode
specification thus make it easy to analyze the binary. Defining
a custom bytecode instruction set and hiding its binding in-
formation with virtual functions makes the binary difficult to
analyze; which is the purpose of VM-obfuscation. From a high-
level view, the basic concept of SGX-LEGO is similar to VM-
obfuscation technique. However, the difference is that SGX-
LEGO mainly focuses its design on achieving side-channel
resilient primitive against instruction granularity fault mon-
itoring rather than dynamic analysis with debuggers.

8. Related works

Since the introduction of Intel SGX in 2013 (Anati et al., 2013;
Hoekstra et al., 2013; McKeen et al., 2013), various defensive
researches have been proposed based on its security feature
(Bauman and Lin, 2016; Baumann et al., 2015; Eskandarian and
Zaharia, 2017; Kim et al., 2015; Küçük et al., 2016; Schuster
et al., 2015; Shih et al., 2016, Fisch et al.). Haven (Baumann
et al., 2015) uses SGX technology to secure the applications
from an untrusted cloud environment. Recently, Microsoft uti-
lizes SGX for enterprise blockchain service in cloud environ-
ment (Moyen, 2017). On the other hand, offensive researches
against SGX as also been explored. According to the attack
model of SGX (Costan and Devadas, 2016; Intel, 2015), an at-
tacker has highest software privilege such as operating sys-
tem. Due to such a powerful attack model, various attacks
have been studied based on memory mapping manipulation
and cache timing based side-channel attacks and so forth. In
this section, we discuss various related works regarding SGX
attack and defense.

8.1. Attacks against SGX

Memory mapping attacks. Controlled-channel attack (Xu et al.,
2015) (introduced in 2015) is a typical example of mem-
ory mapping manipulation attack. Controlled-channel attack
leverages intentional page-faults caused by an attacker to get
page fault sequence information. Later the information is an-
alyzed with code information, and ultimately, attacker infers

136 c o m p u t e r s & s e c u r i t y 8 2 (2 0 1 9) 1 1 8 – 1 3 9

t
s

p
c

S
m
m
p
L

m
p
b
fl
t
m
(

V
h
I
i

W
a
r
a

B
g
e
c
i
d
r

d
p
e
e
t
t
c
s
p

2
i
c
p

2
t
c
a
l
i
a

i
d
p
t

m
m

2
m
s

c
t

e

B
b
l
a

c
o
f
n
(
p
b
e
o
m
l

c
a
c
c
r
u
a
s
R
e

l
t
t
R

m
e
c
c
o
u
c
r
i

8

P
t
n

t
t
e

he data inside enclave memory which caused such faulting
equence.

Xu et al. demonstrated that controlled-channel attack can

artially reveal information of Font library (FreeType), Spell
hecker (Hunspell) and JPEG encoder (libjpeg) inside the enclave.
hinde et al. (2016) demonstrated pigeonhole attack which

akes OS allocate maximum three pages for SGX based on

emory mapping manipulation. Using such attack, the pa-
er various cryptographic keys for AES, EdDSA, RSA from

ibgcrtpy and OpenSSL.
Van Bulck et al. (2017a,b) proved that page access infor-

ation of enclave could be inferred even without causing
age-fault. The attack is based on the observation of page ta-
le entry (PTE) status such as Access or Dirty bits and cache
ushing techniques. Once the victim enclave enters (EENTER)
o the enclave, page read/write attempt can be inferred by

onitoring the change of PTE. Using Inter-Processor Interrupt
IPI), the memory access attempts can be identified instantly.
an Bulck et al. (2017a,b) also shows cache timing attack. To
andle the repetitive access to same enclave page, attack uses

PI signal with a high frequency and checks the page table and

ts cache contents to capture the memory access using TLB.
hen AEX event occurs, TLB entries for the enclave addresses

re cleared. However, the data cache of the corresponding PTE
emains. Leveraging this, attacker uses Flush+Reload (Yarom

nd Falkner, 2014) or Flush+Flush (Gruss et al., 2016) attack.
ased on the flushing execution time, an attacker can distin-
uish the specific PTE that is used for page access (high ex-
cution time signifies the page is accessed). VID attack dis-
ussed in this paper is based on this technique, and SGX-LEGO

s proposed to reduce the number of code pages and eliminate
iscernible access patterns using ROP-style execution and

andomness.
Cache timing attacks. Cache timing attack is based on timing

ifference of main memory access and CPU cache access. SGX

revents such attack by restricting EPC memory from non-
nclave code, yet some collision of cache set due to memory
ncryption engine (MEE) (Gueron, 2016) remains. However, due
o Anti Side-Channel Interference (ASCI), Performance Moni-
oring Counter (PMC) does not record any hardware events oc-
urred inside enclave such as cache hit/miss. Since there is no
hared memory between enclaves, and clflush is not sup-
orted to enclave memory, Flush+Reload (Yarom and Falkner,
014) attack is supposedly infeasible. However, due to some
nevitable conflict between attacker’s enclave and victim’s en-
lave cache, various cache timing attacks are still being pro-
osed by researchers.

Brasser et al. (2017) proposed Prime+Probe (Osvik et al.,
006) attack which makes victim enclave process and at-
acker’s process to use dedicated core and share probes
ache line. To check cache line eviction of victim enclave, the
ttack uses PMC. As a result, private key information was
eaked during RSA decryption (Chinese Remainder Theorem

mplementation). Similarly, sensitive information of genome
nalysis was exposed due to this attack.

Schwarz et al. (2017) demonstrated that side channel attack
s possible even enclave process and attacker’s process uses
ifferent CPU core. Prime+Probe (Osvik et al., 2006) attack ex-
loits that RSA signing operation uses fixed buffer while mul-
iplication. Attack reveals RSA private key from Square-and-
ultiply exponentiation (constant-time Montgomery imple-
entation) of the mbedTLS cryptographic library.
Götzfried et al. (2017) combined Prime+Probe (Osvik et al.,

006) attack and PMC to extract key of AES algorithm (Glad-
an implementation). The attacker, in this case, shares the

ame process as victim enclave yet uses a different thread.
Branch prediction attack. Lee et al. (2017b) introduced a side-

hannel attack based on SGX enclave using branch history ob-
ained from Last Branch Record (LBR) register. Due to ASCI,
nclave does not keep any information of LBR. However,
ranch Target Buffer (BTB) address information is allowed to
e shared between the enclave and outside enclave which al-

ows branch shadowing. Ultimately attacker obtains branch

ddress history from outside of enclave.
Attacker places shadow code outside enclave and exe-

utes target enclave using the leaked branch address. Based

n branch history, the execution speed of branch code is af-
ected. Thus an attacker can tell if the branch was taken or
ot. Using local advanced programmable interrupt controller

APIC) timer, an attacker monitors the precise events. As BTB is
art of the processor, fixing this issue is theoretically possible
ut not trivial. Since SGX-LEGO uses ROP-style execution, ev-
ry branch instructions are substituted with arithmetic stack
peration (adding/subtracting stack pointer) and conditional
oves. Therefore side-channel attack based on branch history

eakage is infeasible in case SGX-LEGO is applied.
ROP Attacks. Lee et al. (2017a) showed that in case enclave

ode has software vulnerability (such as buffer overflow), ROP
ttack becomes feasible even attacker has zero knowledge of
ode information. Using brute-forcing, the attacker first lo-
ates some POP ROP gadgets which can manipulate specific
egisters and the location of ENCLU instruction. The attack
ses different behavior of OS for handling illegal instruction

nd segmentation fault. Attacker determines if EEXIT in-
truction was executed by using the previously identified POP
OP gadgets and what register is affected by such gadgets. Lee
t al. shows that using such gadgets, it is feasible to inject ma-
icious code into RWX pages and leak the sensitive informa-
ion inside enclave to the outside world. In this paper, we use
he concept of ROP for defense (not attack), and we assume
WX page allocation is disallowed for the sake of security.

Scheduling attack. Weichbrodt et al. (2016) introduced a
ethod of exploiting thread synchronization between SGX

nclaves. Removing the page access permission of specific en-
lave page allows interrupting the execution flow of enclave
ode. Once such interrupt happens, another thread uses the
bject inside critical section thus causing race condition and

ltimately hijack the execution flow. For example, if the en-
lave code has a use-after-free vulnerability, an attacker can

emove the page of free() function and switch the schedul-
ng to a different process and allow an attack.

.2. Defenses against attacks

age multiplexing. Shinde et al. (2016) introduced pigeonhole at-
ack and suggested defenses using the compiler-based tech-
ique. The key idea is to make the codes to have a balanced

ree structure for processing data thus make page access pat-
ern to be deterministic and be oblivious to page-fault. How-
ver, it is difficult to adopt balanced execution tree for the

c o m p u t e r s & s e c u r i t y 8 2 (2 0 1 9) 1 1 8 – 1 3 9 137

entire algorithm, and there are 4,000 times additional execu-
tion time. To reduce such huge overhead, the paper suggests
H/W based method as well.

Oblivious access patterns. Oblivious RAM (ORAM) (Goldreich
and Ostrovsky, 1996; Ren et al., 2015; Stefanov et al., 2013) is
a general technique that encrypts and shuffles the memory
access patterns to eliminate access patterns inside untrusted
storage. Ascend (Fletcher et al., 2012), Phantom (Maas et al.,
2013), Raccoon (Rane et al., 2015) uses ORAM technique to
hide memory address trace. Especially, Raccoon (Rane et al.,
2015) and ZeroTrace (Sasy et al., 2017) leverages ORAM to se-
cure the SGX from side-channel attacks. On the other hand,
Ohrimenko et al. (2016) introduced a method using oblivious
primitives and array accesses to prevent input data affecting
the control flow. Using such method, machine learning pro-
cess inside cloud environment is protected from side-channel
attacks.

Transactional synchronization extensions (TSX). T-SGX (Shih
et al., 2017) and Déjá Vu (Chen et al., 2017) uses Intel Transac-
tional Synchronization Extensions (TSX) which uses hardware
transactional memory to defend SGX side-channel attacks
specifically Controlled-channel attack. Using TSX, all faults
are handled as transaction abort, and OS cannot observe page
fault events inside TSX transaction code. The problem is that
if entire enclave code is wrapped with single TSX segment,
the program is likely to hang due to normal fault events.
Therefore T-SGX uses the concept of spring board to sep-
arate pages that have sensitive information and not. Proper
segmentation optimizes the performance and effectiveness of
T-SGX mechanism. T-SGX mitigates early version of
controlled-channel attacks. However, newly proposed attacks
(Van Bulck et al., 2017b; Wang et al., 2017b) are not prevented
as they use different attack mechanism (access/dirty flag) to
observe memory access.

Address Space Layout Randomization (ASLR). SGX-Shield (Seo
et al., 2017) implements additional program loader inside SGX
enclave. The newly added loader randomizes the binary with
Randomization Units (RU) granularity which is smaller than
pages. Each RU is loaded on the random address, and in-
ter RU jumps are handled with additional branch instruc-
tions. Ultimately SGX-Shield adopts fine-grained ASLR inside
SGX enclave. While implementing fine-grained ASLR, SGX-
Shield uses writable code pages. To avoid opening another
attack channels, SGX-Shield uses software DEP and Software-
Fault Isolation (SFI). To distinguish code and data pages, Non-
Readable and Writable (NRW) boundary are used. Using r15
register, the boundary address is checked and sensitive mem-
ory such as State Save Area (SSA), and Thread Control Struc-
ture (TCS) is prevented from being accessed. In-enclave loader
requires 586KB of additional memory space to maintain meta-
data. Also, 64 MB memory is pre-allocated to implement the
SGX-Shield. SGX-LEGO does not require writable code page
and uses default SGX loader.

Runtime code decryption. Verifiable Confidential Cloud Com-
puting (VC3) (Schuster et al., 2015) introduced a MapReduce
framework which safely executes MapReduce operation from
an untrusted cloud environment. Public enclave code inside
cloud environment exchange key with a remote user and de-
crypts user data. However, to decrypt code at runtime, dy-
namic page permission change or RWX memory is required.
The defense also performs runtime integrity check against
memory permissions inside the enclave. SGX-LEGO does not
require such page permission integrity checking as it does not
need dynamic page permission feature from the first place.

9. Conclusion

In this paper, we discuss the security ramification of recently
introduced technique (Van Bulck et al., 2017a; 2017b) that re-
duces the granularity of SGX controlled-channel attack. Based
on the advanced attackers capability, we introduce VID attack
which leaks the identity of code running inside SGX enclave.
While evaluating the VID attack, we explored the feasibility
of inferring exact version and the detailed configuration of
running codes inside SGX enclave. After discussing VID attack ,
we introduce SGX-LEGO: binary conversion framework which
eliminates deterministic page access patterns. The goal of
SGX-LEGO is nurturing the VID attack and any pattern analysis
based on the fine-grained SGX controlled-channel by apply-
ing polymorphism to its execution. SGX-LEGO leverages the
concept of code-reuse-programming to overcome some chal-
lenges regarding SGX page management environment. SGX-
LEGO is composed of 1700 lines of C/C++ code and 1100 lines of
Python code. We evaluated the feasibility of VID attack and the
effectiveness of SGX-LEGO with various cryptographic algo-
rithms and libraries. Performance overhead induced by SGX-
LEGO is × 10 to × 20 on average. However, it effectively elimi-
nates discernible memory access patterns of code execution.

Acknowledgment

This research was supported by National Research Foundation
of Korea (NRF) and Human Resource Development Project for
Brain Scouting funded/supervised by the Ministry of Science,
IITP (Institute for information & communications Technology
Promotion), ICT & Future Planning (NRF-2017R1A2B3006360 ,
IITP-2017-0-01889). KAIST were also supported by a grant from
ONR (Office of Naval Research) grant # N00014-18-1-2661 .

R E F E R E N C E S

Anati I , Gueron S , Johnson S , Scarlata V . Innovative technology
for cpu based attestation and sealing. In: Proceedings of the
second international workshop on hardware and architectural
support for security and privacy, Vol. 13, 2013 .

Bauman E , Lin Z . A case for protecting computer games with SGX.
In: Proceedings of the first workshop on system software for
trusted execution. ACM; 2016. p. 4 .

Baumann A , Peinado M , Hunt G . Shielding applications from an

untrusted cloud with haven. ACM Trans Comput Syst (TOCS)
2015;33(3):8 .

Benony, V., 2017. Hopper disassembler. https://www.hopperapp.
com/ .

Bernat AR , Miller BP . Anywhere, any-time binary
instrumentation. In: Proceedings of the tenth ACM

SIGPLAN-SIGSOFT workshop on program analysis for
software tools. ACM; 2011. p. 9–16 .

https://doi.org/10.13039/501100003621
https://doi.org/10.13039/100000006
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0001
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0001
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0001
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0001
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0001
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0002
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0002
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0002
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0003
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0003
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0003
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0003
https://www.hopperapp.com/
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0004
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0004
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0004

138 c o m p u t e r s & s e c u r i t y 8 2 (2 0 1 9) 1 1 8 – 1 3 9

B

C

C

C

D

E

E

E

F

F

F

G

G

G

G

H

I

K

K

L

L

L

M

M

M

O

O

R

R

S

S

S

S

S

S

S

S

S

S

rasser F , Müller U , Dmitrienko A , Kostiainen K , Capkun S ,
Sadeghi A-R . Software grand exposure: SGX cache attacks are
practical. WOOT, 2017 .

hen S , Zhang X , Reiter MK , Zhang Y . Detecting privileged

side-channel attacks in shielded execution with Déjá vu. In:
Proceedings of the 2017 ACM on Asia conference on computer
and communications security. ACM; 2017. p. 7–18 .

ODEMAP Semantic run-trace visualization for binary analysis.
http://codemap.kr .

ostan V , Devadas S . Intel SGX explained. IACR Cryptol ePrint
Arch 2016;2016:86 .

avi L , Sadeghi A-R , Lehmann D , Monrose F . Stitching the
gadgets: on the ineffectiveness of coarse-grained control-flow

integrity protection.. Proceedings of the 2014 USENIX security
symposium, 2014 .

agle C . The IDA pro book: the unofficial guide to the world’s
most popular disassembler. No Starch Press; 2011 .

lsabagh M , Barbará D , Fleck D , Stavrou A . Detecting ROP with

statistical learning of program characteristics. In: Proceedings
of the seventh ACM on conference on data and application

security and privacy. ACM; 2017. p. 219–26 .
skandarian, S., Zaharia, M., 2017. An oblivious general-purpose

SQL database for the cloud. arXiv: 1710.00458 .
isch BA , Vinayagamurthy D , Boneh D , Gorbunov S . Iron:

functional encryption using Intel SGX. In: Proceedings of the
2017 ACM SIGSAC Conference on Computer and

Communications Security. ACM; 2017. p. 765–82 .
letcher CW , Dijk Mv , Devadas S . A secure processor architecture

for encrypted computation on untrusted programs. In:
Proceedings of the seventh ACM workshop on scalable trusted

computing. ACM; 2012. p. 3–8 .
rassetto T , Gens D , Liebchen C , Sadeghi A-R . JITGuard:

hardening just-in-time compilers with SGX. In: Proceedings of
the 2017 ACM SIGSAC conference on computer and

communications security. ACM; 2017. p. 2405–19 .
oldreich O , Ostrovsky R . Software protection and simulation on

oblivious rams. J ACM (JACM) 1996;43(3):431–73 .
ötzfried J , Eckert M , Schinzel S , Müller T . Cache attacks on Intel

SGX. Proceedings of the 2017 EUROSEC, 2017 . 2–1
russ D , Maurice C , Wagner K , Mangard S . Flush+ flush: a fast and

stealthy cache attack. In: Detection of intrusions and malware,
and vulnerability assessment. Springer; 2016. p. 279–99 .

ueron S . A memory encryption engine suitable for general
purpose processors.. IACR Cryptol ePrint Arch 2016;2016:204 .

oekstra M , Lal R , Pappachan P , Phegade V , Del Cuvillo J . Using
innovative instructions to create trustworthy software
solutions.. In: Proceedings of the 2013 HASP@ ISCA; 2013. p. 11 .

ntel, 2015. ISCA 2015 tutorial slides for Intel(R) SGX, revision 1.1.
https://software.intel.com/sites/default/files/332680-002.pdf.

im S , Shin Y , Ha J , Kim T , Han D . A first step towards leveraging
commodity trusted execution environments for network
applications. In: Proceedings of the fourteenth ACM workshop

on hot topics in networks. ACM; 2015. p. 7 .
üçük KA , Paverd A , Martin A , Asokan N , Simpson A , Ankele R .

Exploring the use of Intel SGX for secure many-party
applications. In: Proceedings of the first workshop on system

software for trusted execution. ACM; 2016. p. 5 .
ee J , Jang J , Jang Y , Kwak N , Choi Y , Choi C , Kim T , Peinado M ,

Kang BB . Hacking in darkness: return-oriented programming
against secure enclaves. Proceedings of the 2017 USENIX

security, 2017a .
ee S , Shih M-W , Gera P , Kim T , Kim H , Peinado M . Inferring

fine-grained control flow inside SGX enclaves with branch

shadowing. In: Proceedings of the 2017 USENIX security
symposium, 2017b .

uk C-K , Cohn R , Muth R , Patil H , Klauser A , Lowney G , Wallace S ,
Reddi VJ , Hazelwood K . Pin: building customized program
analysis tools with dynamic instrumentation, 40. ACM; 2005.
p. 190–200 .

aas M , Love E , Stefanov E , Tiwari M , Shi E , Asanovic K ,
Kubiatowicz J , Song D . Phantom: practical oblivious
computation in a secure processor. In: Proceedings of the 2013
ACM SIGSAC conference on computer & communications
security. ACM; 2013. p. 311–24 .

cKeen F , Alexandrovich I , Berenzon A , Rozas CV , Shafi H ,
Shanbhogue V , Savagaonkar UR . Innovative instructions and

software model for isolated execution. In: Proceedings of the
2013 HASP@ ISCA; 2013. p. 10 .

oyen, M., 2017. Why Intel will benefit from microsoft’s
blockchain-as-a-service. https://seekingalpha.com/article/
4111178- intel- will- benefit- microsofts- blockchain-service .

hrimenko O , Schuster F , Fournet C , Mehta A , Nowozin S ,
Vaswani K , Costa M . Oblivious multi-party machine learning
on trusted processors.. In: Proceedings of the 2016 USENIX

security symposium; 2016. p. 619–36 .
svik DA , Shamir A , Tromer E . Cache attacks and

countermeasures: the case of AES. In: Proceedings of the
20096 cryptographers’ track at the RSA conference. Springer;
2006. p. 1–20 .

ane A , Lin C , Tiwari M . Raccoon: closing digital side-channels
through obfuscated execution.. In: Proceedings of the USENIX

security symposium; 2015. p. 431–46 .
en L , Fletcher CW , Kwon A , Stefanov E , Shi E , Van Dijk M ,

Devadas S . Constants count: practical improvements to
oblivious ram.. In: Proceedings of the USENIX security
symposium; 2015. p. 415–30 .

asy S , Gorbunov S , Fletcher C . Zerotrace: oblivious memory
primitives from Intel SGX. IACR Cryptol Arch Rep

2017;549:2017 .
chuster F , Costa M , Fournet C , Gkantsidis C , Peinado M ,

Mainar-Ruiz G , Russinovich M . VC3: trustworthy data analytics
in the cloud using SGX. In: Proceedings of the 2015 IEEE
symposium on security and privacy (SP). IEEE; 2015. p. 38–54 .

chwartz EJ , Avgerinos T , Brumley D . Q: exploit hardening made
easy. In: Proceedings of the 2011 USENIX security symposium;
2011. p. 25–41 .

chwarz M , Weiser S , Gruss D , Maurice C , Mangard S . Malware
guard extension: using SGX to conceal cache attacks.
Proceedings of the 2017 DIMVA, 2017 .

eo J , Lee B , Kim S , Shih M-W , Shin I , Han D , Kim T . SGX-shield:
enabling address space layout randomization for SGX

programs. Proceedings of the 2017 annual network and

distributed system security symposium (NDSS). San Diego,
CA, 2017 .

hih M-W , Kumar M , Kim T , Gavrilovska A . S-NFV: securing NFV

states by using SGX. In: Proceedings of the 2016 ACM

international workshop on security in software defined
networks & network function virtualization. ACM; 2016.
p. 45–8 .

hih M-W , Lee S , Kim T , Peinado M . T-SGX: eradicating
controlled-channel attacks against enclave programs.
Proceedings of the 2017 ISOC network and distributed system

security symposium, 2017 .
hinde S , Chua ZL , Narayanan V , Saxena P . Preventing page faults

from telling your secrets. In: Proceedings of the eleventh ACM

on Asia conference on computer and communications
security. ACM; 2016. p. 317–28 .

now KZ , Monrose F , Davi L , Dmitrienko A , Liebchen C ,
Sadeghi A-R . Just-in-time code reuse: on the effectiveness of
fine-grained address space layout randomization. In:
Proceedings of the 2013 IEEE symposium on security and

privacy (SP). IEEE; 2013. p. 574–88 .
tefanov E , Van Dijk M , Shi E , Fletcher C , Ren L , Yu X , Devadas S .

Path ORAM: an extremely simple oblivious ram protocol. In:

http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0005
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0005
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0005
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0005
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0005
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0005
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0005
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0006
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0006
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0006
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0006
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0006
http://codemap.kr
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0007
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0007
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0007
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0008
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0008
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0008
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0008
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0008
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0009
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0009
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0010
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0010
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0010
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0010
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0010
arxiv:/1710.00458
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0011
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0011
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0011
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0011
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0011
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0011h
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0011h
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0011h
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0011h
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0012
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0012
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0012
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0012
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0012
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0013
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0013
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0013
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0014
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0014
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0014
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0014
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0014
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0014
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0015
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0015
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0015
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0015
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0015
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0016
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0016
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0017
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0017
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0017
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0017
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0017
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0017
https://software.intel.com/sites/default/files/332680-002.pdf
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0018
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0018
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0018
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0018
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0018
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0018
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0019
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0019
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0019
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0019
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0019
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0019
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0019
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0020
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0020
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0020
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0020
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0020
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0020
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0020
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0020
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0020
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0020
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0021
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0021
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0021
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0021
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0021
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0021
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0021
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0022
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0022
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0022
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0022
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0022
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0022
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0022
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0022
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0022
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0022
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0022
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0023
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0023
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0023
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0023
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0023
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0023
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0023
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0023
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0023
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0024
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0024
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0024
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0024
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0024
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0024
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0024
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0024
https://seekingalpha.com/article/4111178-intel-will-benefit-microsofts-blockchain-service
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0025
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0025
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0025
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0025
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0025
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0025
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0025
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0025
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0026
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0026
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0026
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0026
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0027
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0027
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0027
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0027
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0028
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0028
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0028
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0028
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0028
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0028
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0028
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0028
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0029
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0029
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0029
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0029
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0030
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0030
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0030
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0030
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0030
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0030
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0030
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0030
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0031
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0031
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0031
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0031
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0032
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0032
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0032
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0032
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0032
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0032
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0033
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0033
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0033
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0033
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0033
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0033
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0033
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0033
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0034
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0034
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0034
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0034
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0034
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0035
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0035
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0035
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0035
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0035
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0036
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0036
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0036
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0036
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0036
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0037
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0037
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0037
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0037
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0037
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0037
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0037
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0038
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0038
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0038
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0038
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0038
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0038
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0038
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0038

c o m p u t e r s & s e c u r i t y 8 2 (2 0 1 9) 1 1 8 – 1 3 9 139

Proceedings of the 2013 ACM SIGSAC conference on computer
& communications security. ACM; 2013. p. 299–310 .

Stewart, J., Dedhia, V., 2015. ROP compiler. http://css.csail.mit.edu/
6.858/2015/projects/je25365-ve25411.pdf

Team, C., 2012. Mona. https://www.corelan.be/index.php/2011/07/
14/mona- py- the- manual/

Van Bulck J , Piessens F , Strackx R . SGX-step: a practical attack
framework for precise enclave execution control. In:
Proceedings of the second workshop on system software for
trusted execution. ACM; 2017. p. 4 .

Van Bulck J , Weichbrodt N , Kapitza R , Piessens F , Strackx R .
Telling your secrets without page faults: stealthy page
table-based attacks on enclaved execution. Proceedings of the
twenty-sixth USENIX security symposium. USENIX

Association, 2017 .
Wang R , Shoshitaishvili Y , Bianchi A , Machiry A , Grosen J ,

Grosen P , Kruegel C , Vigna G . Ramblr: making reassembly
great again. Proceedings of the twenty-fourth annual
symposium on network and distributed system security
(NDSS17), 2017a .

Wang W , Chen G , Pan X , Zhang Y , Wang X , Bindschaedler V ,
Tang H , Gunter CA . Leaky cauldron on the dark land:
understanding memory side-channel hazards in SGX. In:
Proceedings of the 2017 ACM SIGSAC conference on computer
and communications security. ACM; 2017b. p. 2421–34 .

Weichbrodt N , Kurmus A , Pietzuch P , Kapitza R . AsyncShock:
exploiting synchronisation bugs in Intel SGX enclaves. In:
Proceedings of the 2016 European symposium on research in

computer security. Springer; 2016. p. 440–57 .
Xu Y , Cui W , Peinado M . Controlled-channel attacks:

deterministic side channels for untrusted operating systems.
In: Proceedings of the 2015 IEEE Symposium on Security and

Privacy (SP). IEEE; 2015. p. 640–56 .
Yarom Y , Falkner K . Flush+ reload: a high resolution, low noise,

L3 cache side-channel attack.. In: Proceedings of the 2014
USENIX security symposium; 2014. p. 719–32 .

Deokjin Kim received the M.S. degree in Computer Engineering
from Pohang University of Science and Technology (POSTECH),
South Korea, in 2006. He is currently working toward the Ph.D.
degree at the Division of Computer Science, Korea Advanced In-
stitute of Science and Technology (KAIST). He is also a senior
research engineer at The Affiliated Institute of Electronics and
Telecommunications Research Institute (ETRI). He has been en-
gaged in research and development of system security, especially
malware analysis and trusted execution environment.

Daehee Jang received the B.S. degree in Computer Engineering
from Hanyang University, South Korea, in 2012. He also received
the M.S. degree in Information Security from Korea Advanced In-
stitute of Science and Technology (KAIST), South Korea, in 2014.
He is currently working toward the Ph.D. degree at the Division of
Computer Science, Korea Advanced Institute of Science and Tech-
nology (KAIST). He is the founder of pwnable.kr wargame. His re-
search interests include software vulnerability, operating system,
and Intel SGX.

Minjoon Park received the B.S. degree in Computer Science from
Korea Advanced Institute of Science and Technology (KAIST),
South Korea, in 2016. He also received the M.S. degree in Informa-
tion Security from Korea Advanced Institute of Science and Tech-
nology (KAIST), South Korea, in 2018. He is currently working to-
ward the Ph.D. degree at the Division of Computer Science, Ko-
rea Advanced Institute of Science and Technology (KAIST). His re-
search interests include software vulnerability, operating system,
cryptography and Intel SGX

Yunjong Jeong received the B.S degree in Computer Science from
Korea Advanced Institute of Science and Technology (KAIST),
South Korea, in 2017. He is currently working toward the M.S. de-
gree at the Division of Computer Science, Korea Advanced Insti-
tute of Science and Technology (KAIST). His research interests in-
clude software vulnerability, compilers, and Intel SGX.

Jonghwan Kim received the B.S. degree in Computer Engineer-
ing from University of Electro-Communications, Japan, in 2011. He
also received the M.S. degree in Information Security from Korea
Advanced Institute of Science and Technology (KAIST), South Ko-
rea, in 2014. He is currently working toward the Ph.D. degree at the
Division of Computer Science, Korea Advanced Institute of Science
and Technology (KAIST). His research interests include software
vulnerability, operating system.

Seokjin Choi received the M.S. degree in Electrical Engineering
from Korea Advanced Institute of Science and Technology (KAIST),
South Korea, in 1998. He is currently working toward the Ph.D.
degree at Korea University. He is also a senior research engineer
at The Affiliated Institute of Electronics and Telecommunications
Research Institute (ETRI). He has been engaged in research and de-
velopment of key management system.

Brent Byunghoon Kang is currently the chief professor at the Grad-
uate School of Information Security, and associate professor at the
School of Computing at KAIST. He has also been with George Ma-
son University as an associate professor in the Volgenau School of
Engineering. He received his Ph.D. in Computer Science from the
University of California at Berkeley, and M.S. from the University of
Maryland at College Park, and B.S. from Seoul National University.
He has been working on systems security including OS kernel in-
tegrity monitors, HW-based trusted execution environment, Code-
Reuse Attack defenses, Memory address translation integrity, and
Heap memory defenses.

http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0038
http://css.csail.mit.edu/6.858/2015/projects/je25365-ve25411.pdf
https://www.corelan.be/index.php/2011/07/14/mona-py-the-manual/
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0039
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0039
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0039
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0039
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0040
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0040
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0040
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0040
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0040
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0040
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0041
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0041
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0041
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0041
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0041
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0041
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0041
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0041
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0041
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0042
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0042
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0042
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0042
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0042
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0042
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0042
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0042
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0042
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0043
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0043
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0043
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0043
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0043
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0044
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0044
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0044
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0044
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0045
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0045
http://refhub.elsevier.com/S0167-4048(18)30234-7/sbref0045

	SGX-LEGO: Fine-grained SGX controlled-channel attack and its countermeasure
	1 Introduction
	2 Background and assumption
	2.1 Basic background of SGX
	2.2 Page fault and SGX
	2.3 Page access monitoring in SGX
	2.4 Code reuse programming
	2.5 SGX remote attestation

	3 Version IDentification attack
	4 SGX-LEGO
	4.1 Non deterministic gadget access
	4.2 Non deterministic payload access

	5 Implementation
	6 Evaluation
	6.1 VID attack
	6.2 SGX-LEGO

	7 Discussion and limitation
	7.1 Automatic ROP payload generation
	7.2 Branch information leakage attack
	7.3 Gadget reusability
	7.4 Accuracy of VID
	7.5 Optimization
	7.6 VM obfuscation

	8 Related works
	8.1 Attacks against SGX
	8.2 Defenses against attacks

	9 Conclusion
	Acknowledgment

	Reference

